Muscle faitgue can be characterized using a non-parametric functional muscle network.

Non-Parametric Functional Muscle Network as a Robust Biomarker of Fatigue

We show that the effects of fatigue on muscle coordination and neural drive can be reliably characterized using a non-parametric functional muscle network. The network demonstrated a consistent decrease in connectivity after the fatigue intervention, as indicated by network degree, weighted clustering coefficient (WCC), and global efficiency. The graph metrics displayed consistent and significant decreases at the group level, individual subject level, and individual muscle level. The proposed approach has the potential to be a sensitive biomarker of fatigue with superior performance to conventional spectrotemporal measures.

The effect of fiducial mismarking on EEG source estimation.

Nonlinear functional muscle network based on information theory tracks sensorimotor integration post stroke

We show that InfoMuNet, a novel functional biomarker based on a nonlinear network graph of muscle connectivity, can quantify the role of sensory information on motor performance. We demonstrate its potential use in precision rehabilitation interventions.

The effect of fiducial mismarking on EEG source estimation.

Perilaryngeal-Cranial Functional Muscle Network Differentiates Vocal Tasks: A Multi-Channel sEMG Approach

We explored the potential of a functional muscle network to differentiate vocal tasks. The network robustly differentiated vocal tasks, while classic muscle activation assessment failed to differentiate. The study also discovered tasks with the highest network involvement, which may be utilized in the future to monitor voice disorders and rehabilitation.

Desk cycling with sensory feedback system

Sensory feedback and assistive motor control for desk cycling

This project explores how sensory feedback can enhance motor control during desk cycling, with applications in rehabilitation and workplace wellness. The research focuses on optimizing user experience and therapeutic benefits through intelligent feedback systems.