Standardized sensor placement framework with anatomical landmarks

A Standardized Framework for Sensor Placement in Human Motion Capture and Wearable Applications

We present a comprehensive framework that standardizes sensor placement in human movement and physiological monitoring applications. Through precise definitions of anatomical landmarks, coordinate systems, and placement protocols, our framework enables reproducible sensor positioning across different applications and laboratories. The system provides quantifiable levels of placement precision and is compatible with existing data-sharing standards like BIDS and HED. This standardization addresses the critical need for consistent sensor placement across applications ranging from clinical biomechanics to consumer wearables, enhancing data quality, reproducibility, and interoperability in human biosensing research.

Participants per Task and Release Overview

HBN-EEG: Healthy Brain Network EEG Datasets

The Healthy Brain Network EEG Datasets (HBN-EEG) includes 11 dataset releases containing EEG, behavioral data, and rich event annotations from participants aged 5-21 years, supporting large-scale analyses and machine-learning research on mental health.

HBN-EEG dataset

HBN-EEG: The FAIR implementation of the Healthy Brain Network (HBN) electroencephalography dataset

The HBN-EEG dataset provides a comprehensive collection of high-density EEG recordings from the Healthy Brain Network project, formatted in the Brain Imaging Data Structure (BIDS) standard. This dataset includes annotated behavioral and task-condition events, making it ready for various types of analysis without the need for extensive preprocessing. With data from over 2,600 participants, the HBN-EEG dataset supports the development and validation of EEG analysis methods, including machine learning and deep learning approaches. Additionally, it aims to facilitate the creation of EEG-based biomarkers for psychiatric disorders, offering valuable insights into brain function and mental health.

Dual-layer electrode structure for biosignal detection and noise cancellation.

System and methods for biosignal detection and active noise cancellation

We developed a novel EEG system with a dual-electrode net structure for noise reduction and precise biosignal capture. Incorporating advanced software for signal processing, this invention enhances EEG accuracy, reduces setup complexity, and broadens EEG applications, including brain-computer interfaces, through real-time noise separation and immersive noise layering techniques.

Re-referencing methods comparison

Re-Referencing Methods for High-Density EEG

This project investigates different re-referencing approaches for high-density EEG recordings, evaluating their effectiveness in reducing artifacts and improving source localization accuracy. The work contributes to best practices for EEG preprocessing pipelines.

The five digitizing methods tested in this study.

More Reliable EEG Electrode Digitizing Methods Can Reduce Source Estimation Uncertainty, but Current Methods Already Accurately Identify Brodmann Areas

Download Paper Code and data Abstract Electroencephalography (EEG) and source estimation can be used to identify brain areas activated during a task, which could offer greater insight on cortical dynamics. Source estimation requires knowledge of the locations of the EEG electrodes. This could be provided with a template or obtained by digitizing the EEG electrode locations. Operator skill and inherent uncertainties of a digitizing system likely produce a range of digitization reliabilities, which could affect source estimation and the interpretation of the estimated source locations....

The effect of fiducial mismarking on EEG source estimation.

Influence of Mismarking Fiducial Locations on EEG Source Estimation

Mismarking fiducial locations can systematically change EEG source locations. We inestigated this effect by systematically moving the fiducial locations to simulate such errors.