The overall design of the Lab Streaming Layer (LSL) for synchronized data recording.

The Lab Streaming Layer for Synchronized Multimodal Recording

The Lab Streaming Layer (LSL) presents a software-based solution for synchronizing data streams across multiple instruments in neurophysiological research. Utilizing per-sample time stamps and LAN-based time synchronization, LSL ensures accurate, continuous recording despite varying device clocks. It automatically corrects for network delays and jitters, maintaining data integrity through disruptions. Supporting over 150 device classes and compatible with numerous programming languages, LSL has become a vital tool for integrating diverse data acquisition systems. Its robustness and adaptability have extended its application beyond research, into art, performance, and commercial realms, making it a cornerstone for multimodal data collection and synchronization.

February 2024 · Christian Kothe, Seyed Yahya Shirazi, Tristan Stenner, David Medine, Chadwick Boulay, Matthew I. Grivich, Tim Mullen, Arnaud Delorme, Scott Makeig
Muscle faitgue can be characterized using a non-parametric functional muscle network.

Non-Parametric Functional Muscle Network as a Robust Biomarker of Fatigue

We show that the effects of fatigue on muscle coordination and neural drive can be reliably characterized using a non-parametric functional muscle network. The network demonstrated a consistent decrease in connectivity after the fatigue intervention, as indicated by network degree, weighted clustering coefficient (WCC), and global efficiency. The graph metrics displayed consistent and significant decreases at the group level, individual subject level, and individual muscle level. The proposed approach has the potential to be a sensitive biomarker of fatigue with superior performance to conventional spectrotemporal measures.

January 2023 · Rory O' Keeffe, Seyed Yahya Shirazi, Jingui Yang, Sarmad Mehrdad, Smita Rao, S Farokh Atashzar
The effect of fiducial mismarking on EEG source estimation.

Perilaryngeal-Cranial Functional Muscle Network Differentiates Vocal Tasks: A Multi-Channel sEMG Approach

We explored the potential of a functional muscle network to differentiate vocal tasks. The network robustly differentiated vocal tasks, while classic muscle activation assessment failed to differentiate. The study also discovered tasks with the highest network involvement, which may be utilized in the future to monitor voice disorders and rehabilitation.

May 2022 · Rory O' Keeffe, Seyed Yahya Shirazi, Sarmad Mehrdad, Tyler Crosby, Aaron M Johnson, S Farokh Atashzar