Standardized sensor placement framework with anatomical landmarks

A Standardized Framework for Sensor Placement in Human Motion Capture and Wearable Applications

We present a comprehensive framework that standardizes sensor placement in human movement and physiological monitoring applications. Through precise definitions of anatomical landmarks, coordinate systems, and placement protocols, our framework enables reproducible sensor positioning across different applications and laboratories. The system provides quantifiable levels of placement precision and is compatible with existing data-sharing standards like BIDS and HED. This standardization addresses the critical need for consistent sensor placement across applications ranging from clinical biomechanics to consumer wearables, enhancing data quality, reproducibility, and interoperability in human biosensing research.

Older adults use fewer muscles to overcome perturbations during a seated locomotor task.

Older adults use fewer muscles to overcome perturbations during a seated locomotor task

Older adults often demonstrate greater co-contraction and motor errors than young adults in response to motor perturbations. We demonstrated that older adults reduced their motor errors more than young adults with brief perturbations during recumbent stepping while maintaining greater muscle co-contraction. In doing so, older adults largely used one muscle pair to drive the stepper, tibialis anterior and soleus, while young adults used all muscles. These two muscles are crucial for maintaining upright balance.

Desk cycling with sensory feedback system

Sensory feedback and assistive motor control for desk cycling

This project explores how sensory feedback can enhance motor control during desk cycling, with applications in rehabilitation and workplace wellness. The research focuses on optimizing user experience and therapeutic benefits through intelligent feedback systems.

The effect of fiducial mismarking on EEG source estimation.

Differential Theta-Band Signatures of the Anterior Cingulate and Motor Cortices During Seated Locomotor Perturbations

We demonstrate that seated locomotor perturbations produce differential theta-band responses in the anterior cingulate and supplementary motor areas, suggesting that tuning perturbation parameters can potentially modify electrocortical responses.