Dual-layer electrode structure for biosignal detection and noise cancellation.

System and methods for biosignal detection and active noise cancellation

We developed a novel EEG system with a dual-electrode net structure for noise reduction and precise biosignal capture. Incorporating advanced software for signal processing, this invention enhances EEG accuracy, reduces setup complexity, and broadens EEG applications, including brain-computer interfaces, through real-time noise separation and immersive noise layering techniques.

Re-referencing methods comparison

Re-Referencing Methods for High-Density EEG

This project investigates different re-referencing approaches for high-density EEG recordings, evaluating their effectiveness in reducing artifacts and improving source localization accuracy. The work contributes to best practices for EEG preprocessing pipelines.

Desk cycling with sensory feedback system

Sensory feedback and assistive motor control for desk cycling

This project explores how sensory feedback can enhance motor control during desk cycling, with applications in rehabilitation and workplace wellness. The research focuses on optimizing user experience and therapeutic benefits through intelligent feedback systems.