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Differential Theta-Band Signatures of the
Anterior Cingulate and Motor Cortices During

Seated Locomotor Perturbations
Seyed Yahya Shirazi , Student Member, IEEE, and Helen J. Huang , Member, IEEE

Abstract— Quantifying motor and cortical responses
to perturbations during seated locomotor tasks such as
recumbent stepping and cycling will expand and improve
the understanding of locomotor adaptation processes
beyond just perturbed gait. Using a perturbed recumbent
stepping protocol, we hypothesized motor errors and ante-
rior cingulate activity would decrease with time, and per-
turbation timing would influence electrocortical elicitation.
Young adults (n = 17) completed four 10-minute arms
and legs stepping tasks, with perturbations applied at
every left or right leg extension-onset or mid-extension.
A random no-perturbation “catch” stride occurred in every
five perturbed strides. We instructed subjects to follow
a pacing cue and to step smoothly, and we quantified
temporal and spatial motor errors. We used high-density
electroencephalographyto estimate sources of electrocorti-
cal fluctuations shared among >70% of subjects. Temporal
and spatial errors did not decrease from early to late for
either perturbed or catch strides. Interestingly,spatial errors
post-perturbation did not return to pre-perturbation levels,
suggestinguse-dependent learning occurred. Theta (3-8 Hz)
synchronization in the anterior cingulate cortex and left
and right supplementary motor areas (SMA) emerged near
the perturbation event, and extension-onset perturbations
elicited greater theta-band power than mid-extension per-
turbations. Even though motor errors did not adapt, ante-
rior cingulate theta synchronization decreased from early
to late perturbed strides, but only during the right-side
tasks. Additionally, SMA mainly demonstrated specialized,
not contralateral, lateralization. Overall, seated locomotor
perturbations produced differential theta-band responses
in the anterior cingulate and SMAs, suggesting that tuning
perturbation parameters, e.g., timing, can potentially modify
electrocortical responses.

Index Terms— Cortical control, mobile brain-body imag-
ing, motor adaptation, use-dependent learning.

I. INTRODUCTION

PERTURBING locomotion often produces error-driven
adaptation where subjects adjust their locomotor pat-

terns to reduce errors, but these adjustments revert to the
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unperturbed patterns after the perturbations are removed
(i.e. wash-out) [1]. When subjects are re-exposed to the
same perturbations or exposed to new perturbations, they
adapt faster and may also modify unperturbed locomotor
patterns [2]. However, these modifications may not transfer
across lower limbs according to a split-belt walking study [3].
Despite the wash-out often seen with error-driven adaptation,
split-crank cycling and split-belt walking can result in retained
post-perturbation modifications if the modifications were not
the direct task goals [4], [5]. For example, after cycling
with different crank angles, subjects had perturbation-specific
muscle activation patterns which did not wash-out post-
perturbation [4]. These locomotor behaviors indicate that
perturbations indeed modify locomotor responses beyond the
perturbation period and that tuning perturbation features could
modulate locomotor responses. Determining motor and cor-
tical responses to different perturbations during a variety of
locomotor tasks, beyond just walking, could greatly improve
the understanding of locomotor adaptation processes.

Advancements in brain imaging technologies such as
high-density electroencephalography (EEG), functional mag-
netic resonance imaging, and positron emission tomogra-
phy have helped researchers identify supra-spinal correlates
of locomotion [6]–[8]. The anterior cingulate cortex theta
(3-8 Hz) power increases significantly during double-support
in walking and during extension-onset in recumbent stepping
[9], [10]. These studies suggest that the anterior cingulate
activity may be monitoring more demanding locomotion
phases. The supplementary motor area (SMA) has similar theta
power fluctuations during walking, cycling, and recumbent
stepping [6], [10], [11]. In general, the SMA and the motor
cortex exhibit substantial alpha-beta (8-30 Hz) fluctuations
during walking, with decreased alpha-beta power indicating
active processing in the motor cortex [12].

The anterior cingulate cortex and SMA also both strongly
respond to perturbations during walking and standing. Pre-
vious studies on split-belt walking, perturbed beam walk-
ing, walking over obstacles, and perturbed stepping reported
perturbation-elicited activity of anterior cingulate, SMA, or in
both areas [8], [9], [13]–[16]. The anterior cingulate cortex (or
the equivalent mid-prefrontal cortex in the EEG channel stud-
ies) activity is often associated with error monitoring or motor
learning, while SMA activity is associated with sensorimotor
integration [15], [17], [18]. If the anterior cingulate cortex
has an error monitoring function, we expect that the activity
would scale with the error size [19]. If the anterior cingulate
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has a role in motor learning, we expect the activity would
decrease with more perturbation experience. Previous studies
on walking over obstacles and perturbed standing did not
observe decreased anterior cingulate activity with more expe-
rience [13], [20]. On the other hand, a recent study reported
scaling of central midline EEG signals at the Cz electrode with
balance performance during a perturbed standing task [21].
However, all three studies had insufficient spatial resolution
to determine confidently whether the electrocortical dynamics
were from a single functional cortical area.

The purpose of this study was to determine the electro-
cortical signatures of motor responses to perturbations during
a seated locomotor task. Adding perturbations during seated
locomotor tasks such as recumbent stepping, which likely
shares neural control with walking [22], [23] could provide an
alternative option for gait rehabilitation since subjects do not
need to maintain their balance. Using our motorized recumbent
stepper [24], we applied discrete mechanical perturbations
during each stride and also had intermittent no-perturbation
“catch” strides. The catch strides could probe whether subjects
were updating anticipatory motor control strategies.

We had four hypotheses. The first hypothesis was that
perturbations would initially create motor errors and increase
anterior cingulate theta power near the perturbation event.
As subjects gained more experience with perturbations,
motor errors, and anterior cingulate theta power would
decrease. The second hypothesis was that motor errors
during the no-perturbation catch strides would increase the
more subjects expected to encounter perturbations and that
anterior cingulate spectral fluctuations would decrease in the
later catches. The third hypothesis was that mid-extension
perturbations, when the limbs were moving the fastest, would
produce more significant errors and anterior cingulate theta
power than extension-onset perturbations. We also expected
to identify activity of the left and right motor cortices [10],
[11] and hypothesized that spectral power fluctuations of the
left and right motor cortices in response to the perturbations
would be lateralized.

II. METHODS

Subjects (n=17, 11 females, age 25 ± 4.9 years) per-
formed perturbed arm-leg stepping on a one degree-of-freedom
recumbent stepper (TRS 4000; NuStep, Inc., Ann Arbor, MI)
integrated with a servomotor (Kollmorgen, Radford, VA),
described in [24] (Figure 1a). The mechanically coupled left
handle and right pedal move together out of phase with the
mechanically coupled right handle and left pedal. As such,
subjects could use any combination of their arms and legs to
drive the stepper.

A. Experiment Procedure and Motor Errors

The Institutional Review Board of the University of Central
Florida approved the protocol and consent form, and the study
was conducted per the principles stated in the Declaration
of Helsinki. All subjects gave their written informed consent
before starting the experiment. Subjects were all right-handed,
based on the hand they would use to pick an object from
the floor. Subjects self-reported no prior neurological or mus-
culoskeletal problems in the past two years before the data
collection date.

Fig. 1. Recumbent stepper and perturbations. a. The recumbent
stepper is a one-degree-of-freedom arm-leg exercise device. b. Per-
turbations were applied either at the extension-onset or mid-extension
of the targeted leg. Perturbations were increased stepping resistance
for 200 milliseconds. c. The experiment included four tasks. Each
task had three ordered blocks, pre, perturbed stepping, and post. The
perturbed stepping block also included random no-perturbation catch
strides.

We recorded EEG using a 128-electrode EEG system
(ActiveTwo, BioSemi B.V., Amsterdam, the Netherlands).
After placing the EEG cap on the subject’s head according
to the BioSemi guidelines, we digitized the electrodes and
fiducial locations using an infrared 3D scanner (Structure
Sensor, Occipital Inc., Boulder, CO). We ensured that the resis-
tance between the scalp and each electrode was <20 Ohms,
indicating good contact between the electrodes and the scalp.
We restrained cable movement using a cable holder behind the
subject’s head and instructed subjects to keep their head steady
to reduce EEG cable sway artifacts [25]. We strapped subjects’
feet to the pedals after they sat on the stepper seat. We also
adjusted the handles to ensure that subjects were comfortable
using the handles to drive the stepper.

The stepper’s servomotor perturbed the stepping motion
with brief 200 ms increases in resistance at either the onset
or middle of extension of the target (left or right) leg dur-
ing the stepping stride (Figure 1b). The increased resistance
magnitude during a perturbation required 3x the torque to
maintain the stepping pace of 60 steps per minute. In total,
there were four perturbation types (left/right leg * mid-
extension/extension onset). A pacing cue equal to 60 steps
per minute (=30 strides per minute) was provided on a visual
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display to help subjects maintain similar stepping speeds
during and across tasks.

EEG was recorded at 512 Hz using the BioSemi software
program, and the stepping kinematics were recorded using the
servomotor’s encoder at 100 Hz in the stepper program. When
the stepper program began and ended, a trigger signal was sent
to start and stop the EEG recording to synchronize the data.

1) Data Collection: The data collection began with two
minutes of quiet sitting, during which the pacing cues were
shown as EEG was recorded. After completing this quiet
sitting portion, subjects completed four 10-minute perturbed
stepping tasks in a pseudo-randomized order. Each task only
included one perturbation type. For each task, there were three
ordered blocks: 1) pre: two minutes of unperturbed stepping,
2) perturbed stepping: six minutes of a single perturbation
timing, and 3) post: two minutes of unperturbed stepping
(Figure 1c). There were no pauses between blocks. In addition
to perturbed strides, the perturbed stepping block included
random one-in-five “catch” strides where no perturbation was
applied. In this paper, we use pre and pre-perturbation and post
and post-perturbation interchangeably. There was two minutes
of quiet sitting at the end of the data collection.

Before starting each task, we instructed subjects to A) step
smoothly as if they were walking, B) use both their arms and
legs to drive the stepping motion, and C) follow the pacing
cues that were projected in front of them (Figure 1a). We did
not instruct subjects on how to follow the pacing cues as there
are several options, such as having a leg be at full extension
when the rectangle on the same side as the leg was black.
Subjects also received no explicit feedback on whether they
were stepping faster or slower than the pacing cue. Subjects
were given at least two minutes of practice with the pacing
cues before starting the data collection.

2) Stride Events: After importing stepping data into
MATLAB (R2018b, MathWorks Inc., Natick, MA), we sepa-
rated each task into blocks and strides. We defined the strides
as the time from one extension-onset of the perturbed leg to
the next extension-onset of the perturbed leg. We excluded
any incomplete strides. For each stride, we identified the
following events: perturbed-step extension onset, perturbation
(start time), recovery-step extension onset, and the end of
the stride. We artificially added perturbation events to the
unperturbed strides (i.e., pre, post, and catch strides), equal
to the average latency of the perturbation events.

3) Motor Errors: We quantified a temporal (pacing) error
and a spatial (stepping) error, from the stepping kinematics
(Figure 2). In our tasks, subjects should have completed a
stride in two seconds based on the 60 steps-per-minute pacing
cues. We defined temporal error as the stepping duration error,
which was the difference between each stride duration and the
two seconds (Figure 2a). Since we instructed subjects to step
smoothly, we expected the stepping profiles to be smooth and
rhythmic during the pre-perturbation block. We defined spatial
error as a stepping position error, which was the maximum dif-
ference between the time-normalized stepper position profile
during each stride and the averaged pre-perturbation stepping
profile (Figure 2b). We used the servomotor encoder data to
quantify the angular stepping position around the stepper’s
common rotating axis (Figure 1a).

Fig. 2. Motor error metrics. Subjects were instructed to match the
pace and step smoothly. a. Stepping duration (i.e., temporal) error is
the difference between stride duration and the two-second pacing cue.
b. Stepping position (i.e., spatial) error is the maximum difference
between the time-normalized stepping profile and the averaged pre
profile.

B. EEG Processing

EEG data were analyzed in MATLAB (R2018b, MathWorks
Inc., Natick, MA) using a customized pipeline based on
EEGLAB (version 2019.0) functions [26] (Figure 3). We used
a high-pass filter at 1 Hz and a 60 Hz line-noise filter (Clean-
Line) to minimally clean the raw data [27], [28]. We imported
stride events from the synchronized stepping data and con-
catenated data from all tasks into a single file. We then used a
template correlation rejection method to identify and exclude
channels with large cyclic artifacts [29].

We developed and used a novel step-wise channel and
frame rejection algorithm to reject channels and data frames
that still contained considerable noise (Figure 3). We removed
the researcher’s need to set single thresholds for the channel
and frame rejection steps. Instead, the step-wise algorithm
identified a suite of thresholds, from lenient to conservative,
that created 32 separate datasets with different rejection levels
for each participant (8 steps for channel rejection * 4 steps for
data-frame rejection = 32 datasets). Channel rejection metrics
were the signal range, standard deviation, kurtosis, and corre-
lation to the other channels. Frame rejection involved finding
periods of the EEG data with a significantly higher signal
variability than the overall median of signal variability. While
the number of the rejected channels and frames varied for each
participant and increment, we set the rejection thresholds such
that the most conservative increment always retained > 85
channels and > 80% of data.

We used independent component analysis (ICA), the dipolar
source estimation technique (DIPFIT), and a multi-variate
source classifier (ICLabel) on each step-wise dataset to iden-
tify and locate the sources that contributed to the EEG signals.
We specifically used the adaptive mixture independent compo-
nent analysis (AMICA) to separate the EEG into temporally
independent components [30]. To select the best increment
from the 32 step-wise datasets, we first estimated the source
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Fig. 3. EEG post-processing workflow with a novel step-wise algorithmic parameter sweeping noise rejection process. Shaded blocks
indicate inputs or outputs. Thick lined blocks highlight the novel step-wise rejection approach.

locations for each dataset’s independent components using
EEGLAB’s DIPFIT version 3.0. We then excluded any source
located outside the brain or with the residual variance > 15%.
We then used EEGLAB’s ICLabel toolbox to classify the
source types as “brain” or “non-brain” [31] and selected the
step-wise dataset with the topmost “brain” sources as the
representative dataset for each subject. We visually checked
the results of the ICLabel for the selected dataset to confirm
the classification of the sources as “brain” (or “non-brain”).

We then clustered the sources across all subjects based
on the source location, power spectrum, and scalp map.
We divided the power spectrum and scalp map into ten bins.
The binned power spectrum was from 3 to 25 Hz. The Lapla-
cian of the scalp map was used for clustering [32]. We devel-
oped and used a novel optimal k-means approach to determine
the number of clusters from a range of possible numbers
of clusters provided to the algorithm (here, from 15 to 30
clusters). The optimal k-means approach uses MATLAB’s
“evalcluster” function to find the specific number of clusters
that maximize the similarity of the sources within each cluster.
We kept and analyzed only the clusters that contained com-
ponents from more than 70% of the subjects. If a subject had
multiple sources in a cluster, we only kept the source with the
largest channel data variance. We identified Brodmann Areas
and cortical cortices of the sources and cluster centroids using
Talairach coordinates and talairach.org [33], [34].

We computed the time-frequency spectral power of each
source in the cluster across the stride epochs, known as
event-related spectral perturbations (ERSP) [35]. For hypothe-
ses 1, 2, and 4, each epoch was a stride, and for hypothesis 3,
each epoch was –400 ms to +400 ms of the perturbation
event. We padded the epochs by 700 ms to avoid possible
edge effects. Next, we baseline-normalized the spectral power
based on the pre-perturbation block’s average spectral power
and computed the ensembled average ERSPs across subjects.
We determined the significant event-related synchronization
and event-related desynchronization across the ERSPs using
EEGLAB’s bootstrapping method with alpha set at 0.05 [36].
ERSP images only show significant spectral fluctuations.

C. Statistical Analysis

1) Identification of Motor Responses: We tested the tem-
poral and spatial errors to determine the error behav-
ior. For each subject, we divided their strides into 20%
batches in the pre and post blocks and 10% batches in the
perturbed-stepping block [37]. We compared the average of

the first and last batches of perturbed strides, catch strides,
and post-perturbations strides, as well as the last batch of
pre-perturbation strides using repeated-measure analysis of
variance (rANOVA) for each error and task. If the rANOVA
was significant, we performed a priori Fisher’s Least Signifi-
cant Difference (LSD) tests for the following pairs: 1) late pre
vs. late post (for sustained post modifications and wash-out),
2) early vs. late post (for wash-out), 3) early vs. late catch (for
adaptation), and 4) early vs. late perturbed (for adaptation).
The significance level for all statistical tests was 0.05.

2) Tests for Hypotheses 1 and 2: Adaptation of Motor and
Cortical Responses: We compared motor errors and electrocor-
tical dynamics between the early (first 33% of the strides) and
late (last 33% of the strides) in the perturbed stepping block.
Here, we used 33% of the strides as early or late to retain at
least 10 strides per subject (total perturbed strides≈140-150,
total catch strides≈30-40) for EEG group-level analyses [35],
[36]. We tested motor errors for the perturbed and catch
strides separately and used rANOVA with three factors:
1) adaptation with two levels: early and late, 2) task side with
two levels: left and right, and 3) perturbation timing also with
two levels: mid-extension and extension-onset. We performed
post-hoc Student paired t-tests only if the adaptation had
a significant main effect because adaptation was the only
factor pertinent to our first two hypotheses. To compare the
electrocortical responses between early and late perturbed
strides and early and late catch strides, we computed the
spectral fluctuations and averaged the spectral powers to derive
the theta-band (3-8 Hz) ERSP waveform [36], [38]. We com-
pared the early and late theta-band average ERSP waveforms
using bootstrapped paired t-tests and false discovery rate
corrections for multiple comparisons with EEGLAB’s “stat-
cond” and “fdr” functions. We also determined meaningful
spectral-power increases or decreases of the theta-band by
determining when the power confidence interval was greater
or less than zero. We excluded other frequency bands because
preliminary analyses showed the main spectral fluctuations
were limited to theta. The significance level for all statistical
tests was 0.05.

3) Tests for Hypothesis 3: Effect of Perturbation Timing:
We included all perturbed strides to quantify possible motor
and electrocortical differences between perturbation timings,
i.e., mid-extension and extension onset. For each motor error,
we used rANOVA with two factors: 1) perturbation tim-
ing with two levels: mid-extension and extension-onset, and
2) task side also with two levels: left and right. We only



472 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 29, 2021

Fig. 4. Temporal and spatial errors during perturbed stepping. The perturbed-stepping block include both perturbed strides (green) and one-
in-five random catch strides (purple). For perturbed-stepping, the 10 circles are the averages of 10% batches. For pre and post, the 5 circles are the
averages of 20% batches. * indicates significant post-hoc LSD tests a. Temporal errors were different between perturbed and catch strides (∼50 ms
vs. ∼200 ms) and returned to the pre levels during the post block. b. Spatial error was greater for the perturbed strides than catch strides, and did
not return to pre levels during post.

performed a post-hoc Student paired t-test between the same
side tasks if there was a significant perturbation timing effect.
We compared the ERSPs centered around the perturbation
event for left-side tasks (i.e., left mid-extension and left
extension-onset) and right-side tasks separately. Similar to the
tests for hypotheses 1 and 2, we used bootstrapped paired
t-tests with corrections for multiple comparisons to compare
the theta-band average ERSP between the tasks and deter-
mined meaningful spectral-power increases or decreases when
the power confidence interval cleared zero. All statistical tests
had 0.05 significance level.

4) Tests for Hypothesis 4, Motor Cortex Lateralization: We
compared spectral fluctuations of the cortical clusters during
the left and right-side tasks to investigate contralateral and
specialized lateralization of the motor cortex. Hemispheric
activity that corresponds to contralateral limb movements is
contralateral lateralization whereas hemispheric activity that
corresponds with ipsilateral limb movements is specialized lat-
eralization [39]. All perturbed and catch strides were included
in this analysis.

III. RESULTS

A. Motor Error Responses and Cortical Clusters

Temporal (pacing) and spatial (stepping) errors did not
decrease with more exposure to perturbations, and spa-
tial errors did not wash-out (Figure 4). Perturbed-stride
temporal errors were ∼50 ms but catch-stride temporal
errors were ∼200 ms (Figure 4a). The rANOVAs indi-
cated significant temporal error differences in each task
(F’s(6,96)>40, p’s<0.0005). Post-hoc LSD showed a slight
temporal error increase during left and right extension-onset
perturbed strides and a temporal error decrease during right
extension-onset strides post-perturbation. Spatial errors of per-
turbed strides were steady, ∼12◦ for mid-extension and ∼16◦
for the extension-onset (Figure 4b). During the mid-extension
tasks, catch-stride spatial errors seemed a continuation of
pre-perturbation errors at ∼5◦ but trended to ∼10◦ by the end

of the catch strides. rANOVAs were significant for the spatial
errors across all tasks (F’s(6,96)>29, p’s<0.0005). Spatial errors
did not wash-out (i.e., return to pre) during post-perturbation
(post-hoc LSD p’s<0.05). However, post-perturbation spatial
errors in the right-side tasks decreased from the first to last
batch (LSD p’s<0.05).

The optimal k-means identified five cortical clusters
(Figure 5). We focused on three clusters located at the anterior
cingulate cortex (14 subjects), left SMA (13 subjects), and
right SMA (13 subjects). Cluster locations were assigned to
the nearest Brodmann areas based on the Talairach coordinates
of the cluster centroid [34]. As the SMA and premotor cortex
share Brodmann area 6, we further confirmed the SMA cluster
locations from a previous fMRI and PET meta-analysis [40].
The left and right SMA were determined based on the cluster’s
centroid location and the individual source locations.

B. Anterior Cingulate Theta-Band Adaptation Occurred
Without Motor Error Adaptation in Perturbed Strides

Motor errors of the perturbed strides did not decrease from
early to late, but anterior cingulate theta-band spectral power
decreased in the right-side tasks (Figure 6a-c). Neither adap-
tation nor task side had a significant effect on the perturbed
strides (rANOVA, temporal adaptation: F(1,16) = 0.74, p =
0.789, temporal side: F(1,16) = 0.74, p = 0.789, spatial adap-
tation: F(1,16) = 2.98, p = 0.104, spatial side: F(1,16) = 0.71,
p = 0.413). Mid-extension perturbed strides had significantly
greater average temporal errors (71 vs. 39 ms) but smaller
spatial errors (12◦ vs. 16◦) than the extension-onset perturbed
strides (rANOVA, temporal: F(1,16) = 461, p<0.0005, spa-
tial: F(1,16) = 30.6, p<0.0005). Perturbations elicited anterior
cingulate theta synchronization during all tasks (Figure 6b).
Theta spectral power decreased from early to late for right-side
perturbed strides. The left-side perturbed strides, however, had
similar and sometimes stronger theta synchronization during
late strides than the early strides. The anterior cingulate cortex
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Fig. 5. Locations of the electrocortical clusters. Clusters with sources from > 70% of the subjects are shown. Only one source per subject was
selected for each cluster during analysis. “% of all” indicates the percentage of all components in the Brodmann Area. a.u.: arbitrary unit.

also showed theta desynchronization in the recovery steps
(i.e., the unperturbed steps after perturbed steps), specifically
for the early right-side and late left-side perturbations. The
theta-band average ERSP bootstrap t-tests revealed that spec-
tral power had a decreasing trend from early to late for the
right-side tasks, which was significant for right mid-extension
perturbations (Figure 6c). In the left-side perturbed strides, late
synchronizations during the recovery steps were statistically
different from the non-significant spectral fluctuations during
early recovery steps.

C. Anterior Cingulate Theta-Band Adaptation Occurred
Without Motor Error Adaptation in Catch Strides

Motor errors did not increase from early to late catch strides,
but early catch strides still elicited theta synchronization in the
anterior cingulate cortex (Figure 6d-f). Similar to the perturbed
strides, neither adaptation nor task side had a significant effect
on the temporal or spatial motor errors (rANOVA, temporal-
adaptation: F(1,16) = 3.76, p = 0.070, temporal-side: F(1,16) =
1.65, p = 0.217, spatial-adaptation: F(1,16) = 1.43, p = 0.25,
spatial-side: F(1,16) = 0.70, p = 0.415). Mid-extension catch
strides had significantly greater average temporal (250 vs.
153 ms) and spatial errors (8◦ vs. 6◦) than the extension-onset
catch strides (rANOVA, temporal: F(1,16) = 31.9, p<0.0005,
spatial: F(1,16) = 24.4, p<0.0005). Early catch steps elicited
anterior cingulate theta synchronization (Figure 6e). This
synchronization occurred before completion of the catch-step
extension for the mid-extension tasks but was near the start of
the catch step for just the right extension-onset catch strides.
The left mid-extension and right extension-onset elicited
theta desynchronization in the recovery steps (Figure 6e-f).
For right extension-onset, the recovery steps of the late catch
strides elicited significantly greater spectral power than the
early catch strides.

D. Perturbations at Extension-Onset had Greater
Theta-Band ERSP in Motor Cortices Than at
Mid-Extension

Group analyses including all perturbed strides revealed
differential motor error and cortical responses based on per-
turbation timing (Figure 7). Comparing motor errors across
all perturbed strides revealed that perturbation timing, and not
the task side, was a significant factor (rANOVA, temporal
timing: F(1,16) = 30.5, p<0.0005, temporal side: F(1,16) = 2.24,

p = 0.15, spatial timing: F(1,16) = 27.5, p<0.0005, spatial
side: F(1,16) = 0.25, p = 0.62) (Figure 7a-b). For each side,
temporal error was significantly greater during mid-extension
than extension-onset and the spatial error was smaller during
mid-extension than extension onset (post-hoc paired t-test,
temporal right: p<0.0005, temporal left: p = 0.001, spatial
right: p<0.0005, spatial left: p = 0.001). The extension-onset
perturbations elicited a significant increase in theta-band ERSP
before the perturbation event across the anterior cingulate and
ipsilateral SMA (Figure 7c). The increased theta-band ERSP
for mid-extension perturbations was delayed, occurring after
the perturbation event in the anterior cingulate and left SMA
but was about -100 ms before the perturbation event in the
right SMA. Only the ipsilateral left SMA showed greater
extension-onset theta-band ERSP than mid-extension for more
than 100 ms after the perturbation onset.

E. Cortical Lateralization and Specialization

The left and right SMAs demonstrated both contralateral
and task-specific lateralization with respect to lower limb
extension (Figure 8). The recovery-step desynchronization
during the perturbed strides was most prominent in the right
SMA for extension-onset tasks and in the left SMA for
the mid-extension tasks, indicating presence of task-specific
lateralization (Figure 8a, red rectangles). Mid-extension tasks
also involved theta desynchronization before the perturbation
event in both left and right SMAs (Figure 8a, red dashed rec-
tangles). Similar recovery-step desynchronization was present
in the catch strides but were limited to the ipsilateral SMA of
the recovery-step leg during extension-onset tasks and to the
right SMA for mid-extension tasks (Figure 8b, black and red
rectangles). Strong theta synchronization only occurred in the
right SMA for mid-extension catch strides just before the end
of the catch step (Figure 8b, red dashed rectangles).

IV. DISCUSSION

We quantified motor and electrocortical responses to fre-
quent mechanical perturbations during recumbent stepping to
gain insight on the electrocortical dynamics of locomotor
adaptation. We did not observe typical motor error adaptation.
Temporal errors were consistently ∼50ms of the desired pace
during perturbed strides and returned to pre-perturbation levels
in the post block. Spatial errors did not adapt (decrease)
with more exposure to the perturbations and did not return
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Fig. 6. Motor errors and anterior cingulate ERSP a. and d. Adaptation (early vs. late) was not a significant factor for motor errors. # indicates
perturbation timing was a significant factor. Error bars indicate confidence interval (CI) b. Perturbations (i.e., the strong solid lines) elicited theta
synchronization in anterior cingulate cortex. Right-side perturbations elicited weaker synchronization during the late perturbed strides. c. Average
theta-band ERSP waveform shows increased power after the perturbations across the tasks. Late perturbations elicited less theta-band average
power only on the right-side tasks. e. Early catches (narrow solid lines) elicited a theta synchronization in the anterior cingulate cortex. f. Average
theta-band ERSP waveform shows late right extension-onset catch strides elicited significantly higher spectral power than the early catch. Shaded
areas indicate CI. Black bars indicate significant difference between early and late. Colored bars indicate CI does not overlap with zero.

to pre-perturbation levels in the post block. The lack of
error-based adaptation behavior coupled with small temporal
errors and sustained spatial errors in the post block are indica-
tive of use-dependent learning [41]. Electrocortical sources
in the anterior cingulate cortex and supplementary motor
areas showed that perturbations elicited theta synchronization,
as expected. Despite the lack of motor error adaptation,
anterior cingulate theta synchronization showed a decreasing
trend during late perturbed strides in the right-side tasks.
Interestingly, theta-band ERSP during extension-onset tasks
started before the perturbation event, resulting in greater theta
synchronization in the anterior cingulate and SMAs preceding
the perturbation event compared to mid-extension tasks. Motor
cortex lateralization was mostly task-specific, where theta
desynchronization occurred during the recovery-step in the

right SMA for extension-onset tasks but in the left SMA for the
mid-extension tasks. These results highlight that electrocortical
and motor responses are not necessarily coupled and that
perturbation features such as timing could be tuned to elicit
greater involvement of specific brain areas.

The perturbed recumbent stepping protocol did not pro-
duce the typical error reduction and rapid wash-out associ-
ated with motor adaptation, but instead, revealed sustained
errors during the post-perturbation block (Figure 4), suggest-
ing use-dependent learning occurred. In preliminary analyses,
we compared multiple definitions of early and late to deter-
mine the robustness of the lack of error-based adaptation in our
study. Statistical tests consistently showed no significant differ-
ence between early and late, except when early was defined as
just the first stride. When perturbations do not directly hinder
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Fig. 7. Motor errors and theta-band ERSP across perturbation
timings. a. and b. Task type (mid-extension vs. extension-onset) was a
significant factor for motor errors. Error bars indicate confidence interval
(CI). c. Extension-onset perturbations had greater anterior cingulate
and ipsilateral theta-band ERSP before the perturbation event (the
solid vertical line). The theta-band ERSP was not significantly different
after the perturbation event, except for the left SMA ipsilateral task.
Shaded area indicates confidence interval. Black bars indicate significant
difference between perturbation timing. Colored bars indicate CI clearing
zero.

achieving the task goal, use-dependent learning emerges more
than error-based adaptation [41]. With use-dependent learning,
motor behaviors are modified in the direction of perturbation
and sustained longer after removing the perturbations. Here,
we did not provide subjects with any visual feedback of their
errors or task performance, so, matching the stepping pace
with the pacing cues was the more explicit task goal. Because
subjects matched the pacing cues well with temporal errors
of ∼50 ms, which might be imperceptible for active control
adjustments [42], the perturbations did not hinder achieving
the task goal. For the less explicit goal of stepping smoothly,
however, spatial errors were sustained during perturbed strides
and did not wash out during the 2-minute post-perturbation
block. During split-crank cycling and split-belt walking where
changing muscle recruitment was not an explicit task goal,
modified muscular activation patterns were sustained [4], [5].
More recently, a perturbed walking study using brief treadmill
belt accelerations during push-off also reported use-dependent
learning and sustained post-perturbation gait modifications
[43]. Longer-lasting locomotor modifications are desirable

for gait rehabilitation and warrant further development of
use-dependent learning paradigms.

Perturbations during our seated locomotor task elicited
significant anterior cingulate theta synchronization that also
decreased with time (i.e. adapted) for right-side perturbations,
providing new insights about the anterior cingulate role in
error monitoring and motor learning. Previous studies have
attributed anterior theta synchronization, or the analogous neg-
ative deflection in event-related potentials, to physical loss of
balance or presence of a postural threat [15], [44]. Our results
demonstrated that even without a potential loss of balance,
mechanical perturbations during a seated locomotor task can
elicit anterior cingulate activity. We also observed a trend of
adaptation of anterior cingulate theta synchronization for the
right-side tasks, which contrasts previous studies that did not
observe changes in the anterior cingulate cortex with adapta-
tion but acknowledged a lack of spatial resolution [13], [20].
Our approach likely had sufficient resolution [34], [45], but we
observed a trend of anterior cingulate adaptation only in the
right-side tasks. Despite consistent motor errors during catch
strides, only early catch strides elicited theta synchronization,
suggesting that the anterior cingulate perceived early catches
as errors, which emphasizes that mechanical perturbations are
crucial for anterior cingulate elicitation. Overall, the sustained
anterior cingulate theta power across all tasks during perturbed
stepping further supports that the anterior cingulate cortex has
a role in error-monitoring. However, the theta-band adaptation
trend during right-side perturbed stepping suggests that the
anterior cingulate also has a role in locomotor learning.

Perturbation timing significantly influenced anterior cin-
gulate theta-band power fluctuations (Figure 6), suggesting
that tuning perturbation features can modify and stimulate
anterior cingulate activity. The theta-band average ERSP for
extension-onset perturbations was greater than mid-extension
perturbations. This difference may result from an additional
intrinsic anterior cingulate theta synchronization that occurs
during limb transitions in unperturbed gait, pedaling, and
stepping [6], [7], [9], [10]. However, our results did not
show significant anterior cingulate activity during pre and
post-perturbations strides, partly because our analyses and ICA
focused on identifying sources involved in perturbed stepping.
The sustained anterior cingulate theta-band elicitation over
the entire six minutes of left mid-extension perturbations
demonstrates that specific perturbations could be tuned to
enhance or extend cortical engagement.

We identified two close but distinct SMA clusters that
exhibited specialized lateralization with both theta synchro-
nization and desynchronization. We were able to identify
distinct clusters in close proximity using our novel EEG
noise rejection process that performs algorithmic parameter
sweeping to estimate the most brain sources and an optimal
k-means clustering algorithm to identify optimal cortical clus-
ters (Figure 3). The left and right SMAs had clear differences
in theta fluctuations (Figure 8), supporting that these SMA
clusters were distinct and had specialized responses to the
perturbations or motor errors. Theta synchronization occurred
exclusively in the right SMA during mid-extension catch steps
that had the largest temporal errors (∼250 ms), suggesting that
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Fig. 8. Supplementary motor area (SMA) Lateralization. a. Theta
desynchronization in the perturbed recovery step occurred in the right
SMA for extension-onset and in the left SMA for the mid-extension
(red squares). Only mid-extension perturbations elicited theta desyn-
chronization before the perturbation event (red dashed rectangles).
b. Mid-extension catch steps elicited theta synchronization before the
end of limb extension (red dashed rectangles). Recovery-step theta
desynchronization occurred contralaterally during extension-onset, but
only occurred in the right SMA during the mid-extension. Red and black
indicate specialized and contralateral lateralization respectively.

despite the lack of a physical perturbation, the right motor
area theta synchronization was still sensitive to a motor error.
The right motor and premotor cortices have been linked with
monitoring temporal aspects of motor tasks [38], [39].

Interestingly, theta desynchronization occurred during the
recovery step (i.e., the step following a perturbed step) in
the right SMA during extension-onset perturbations and in
the left SMA during mid-extension perturbations (Figure 8).
Previous unperturbed gait studies showed significant theta
desynchronization in sensorimotor cortices during mid-stance,
but the significance of theta desynchronization specifically is
not discussed [6], [7], [9], [10]. A recent study demonstrated
that theta synchronization and desynchronization corresponds
to negative and positive deflections in event-related poten-
tials (ERP) of motor cortex, respectively [46]. As such, ERP
studies provide additional possible interpretations for observed
theta synchronization and desynchronization in locomotor
tasks. For example, a recent study on upper-limb visuomotor
perturbations suggested that the presence (or absence) of
negative and positive potentials during perturbations indicated

different motor learning strategies [47], which aligns with our
results.

Limitations of this study include attributing cortical and
motor responses to lower-limb extension and focusing on EEG
group-level analyses. We attributed the perturbations to the
action of extending the lower-limb, i.e., left mid-extension
perturbation means the perturbation occurred in the middle
of extending the left-leg. Our stepping torque analysis (not
reported here) and a previous study showed that during
arms and legs recumbent stepping, subjects mainly relied
on lower-limb extension for higher power demands [48].
Ensemble averaging across strides and subjects is necessary
for EEG group-level analysis to reveal event-locked cortical
fluctuations [35], [36]. Previous studies had >60 strides per
subject for ensemble averaging, inherently increasing their
statistical power [15], [38]. We had ∼10 catch strides and ∼50
perturbed strides per subject and yet were still able to observe
distinct event-locked spectral fluctuations. Further single trial
analysis may provide more insights into the inter-stride cortical
variability [20], [49].

Mechanical perturbations are a robust way to elicit
error-related cortical fluctuations and could be tuned to further
enhance desired cortical activity. During a seated locomo-
tor task, mechanical perturbations elicited anterior cingulate
cortex activity, which decreased with more experience with
the right-side perturbations. This supports that the anterior
cingulate both monitors errors and learns from them [50]. The
left and right SMA clusters demonstrated task-specific later-
alization, suggesting that tuning perturbation features such as
timing can elicit more desired cortical activity. The uncoupled
anterior cingulate activity with motor errors and the specialized
SMA fluctuations implicate that cortical feedback may be
crucial for closed-loop rehabilitation because motor changes
may not adequately reflect cortical dynamics.
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