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Nonlinear functional muscle 
network based on information 
theory tracks sensorimotor 
integration post stroke
Rory O’Keeffe1, Seyed Yahya Shirazi1,6, Seda Bilaloglu2,6, Shayan Jahed1, Ramin Bighamian3, 
Preeti Raghavan4,7* & S. Farokh Atashzar1,5,7*

Sensory information is critical for motor coordination. However, understanding sensorimotor 
integration is complicated, especially in individuals with impairment due to injury to the central 
nervous system. This research presents a novel functional biomarker, based on a nonlinear network 
graph of muscle connectivity, called InfoMuNet, to quantify the role of sensory information on motor 
performance. Thirty-two individuals with post-stroke hemiparesis performed a grasp-and-lift task, 
while their muscle activity from 8 muscles in each arm was measured using  surface electromyography. 
Subjects performed the task with their affected hand before and after sensory exposure to the task 
performed with the less-affected hand. For the first time, this work shows that InfoMuNet robustly 
quantifies changes in functional muscle connectivity in the affected hand after exposure to sensory 
information from the less-affected side. > 90% of the subjects conformed with the improvement 
resulting from this sensory exposure. InfoMuNet also shows high sensitivity to tactile, kinesthetic, and 
visual input alterations at the subject level, highlighting its potential use in precision rehabilitation 
interventions.

Stroke is a leading cause of long-term disability worldwide. As many as 76% of individuals with stroke experience 
upper-limb motor impairment at stroke onset1. This impairment results from disrupted afferent and efferent 
neural transmission to and from the central nervous system (CNS), ultimately causing delayed initiation and 
termination of muscle contraction2, slowness in developing forces, and disrupted processing and responsiveness 
to sensory feedback3. The collective firing of alpha motor neurons in the spinal cord activates motor units in the 
muscles, and their recruitment can be examined using surface electromyography (sEMG) to evaluate alterations 
in motor control4,5. However, there are a variety of muscle activation parameters that can be altered as a result 
of stroke, which makes it difficult to find a parsimonious and consistently robust method to objectively evaluate 
changes in muscle coordination and motor control across individuals with stroke.

Stroke-induced motor impairments are more apparent in the contralesional limbs (affected side) than in the 
ipsilesional limbs (i.e., less-affected side)6. In addition, the location of the stroke lesion in the brain can have 
specific effects on motor and sensory processes7,8. For example, a stroke in the right frontal region may impair 
temporal motor control on both the affected and less-affected sides, whereas a left parietal stroke may affect the 
spatial accuracy of upper limb reaching tasks8,9. Specific stroke locations can produce selective visual, tactile, 
or proprioceptive sensory deficits, which also affect motor planning and performance10,11. However, the less-
affected side may provide critical sensory inputs to improve motor planning and performance on the affected 
side during functional tasks12.

Rehabilitation after stroke is personalized based on the type and severity of the deficits and rehabilitation 
goals of the individual13. Quantifying the extent and severity of the impairments using standardized tools such 
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as the Chedoke-McMaster Stroke Assessment and the Fugl-Meyer Scale can classify patients based on the level 
of impairment and track improvement with rehabilitation14,15. However, these tools do not quantify sensorimotor 
integration and are not sensitive to subtle changes in functional motor coordination and control that may occur 
within a single session. Thus, there is an unmet need for objective functional biomarkers to track subtle changes 
in motor control, for example, in response to sensory feedback.

The spectrotemporal features of sEMG can, in theory, be the basis for a biomarker to monitor changes in 
motor control after stroke. This is because stroke alters the fluency of communication between the CNS and 
muscles, resulting in changes in sEMG activation patterns for everyday tasks16. Quantifying changes in sEMG 
using classical metrics such as the root mean square (RMS) amplitude16,17 and power spectral density (PSD)5,18,19 
of muscle activity can be used to determine the intensity of muscle activation and the use of compensatory 
strategies. However, these metrics do not offer a means to combine the information from multiple muscles in a 
task-specific manner to assess coordination.

More advanced methods of sEMG processing such as low-frequency muscle synergies have been proposed 
to model coherence across muscle groups which play an imperative role in functional task performance20–22. 
However, conventional muscle synergy analysis of the affected and less-affected limbs has shown similar patterns 
despite clear differences in motor performance. This suggests that muscle synergies may reflect spinal neural 
control23 and may not provide the differential power needed to evaluate the shades of functional impairment 
caused by alterations in supraspinal neural control.

A more recent method for assessing functional connectivity across muscles computes the intermuscular 
coherence network which is a measure of the degree of information sharing across muscles necessary for senso-
rimotor control of movement24,25. In this regard, a recent study on postural balance tasks showed that humans 
reorganize coherence-based muscle networks across limbs in the beta-to-gamma bands (20–60 Hz)26. Coherence 
analysis across various muscle groups may represent the common input from the upper motor neurons to alpha 
motor neurons27. This concept has been tested using invasive needle electromyography as a potential biomarker 
of upper motor neuron involvement in motor neuron disease28. The connectivity between muscles at multiple 
distinct frequency bands demonstrates how muscle networks can be used to investigate the neural circuitry of 
motor coordination and provides insight about subtle motor control strategies that cannot be differentiated with 
other metrics, including muscle synergies29.

While the recently-accelerated research on muscle connectivity has focused on the use of linear measures of 
same-frequency coherence (such as delta-band source to delta-band target)26,29,30, cross-frequency connectiv-
ity and nonlinear coupling have not been investigated even though they can provide  holistic insight into the 
distributed neural drive at the peripheral nervous system level. In this paper, we utilize the concept of mutual 
information rooted in Shannon’s information theory to implement a nonlinear muscle network for stroke sub-
jects. Mutual information has been proposed as an appropriate metric in connectivity analysis at the CNS level, 
for example in studying EEG-based functional brain connectivity. An example of a method that was proposed 
in the literature based on mutual information for connectivity analysis in the CNS is Weighted Symbolic Mutual 
Information (wSMI)31,32. Information-theoretic measures of brain connectivity have shown the ability to detect 
neurological differences that were not detectable with linear measures33,34, including the differentiation of patients 
with neurological disorders from healthy controls33,35,36. To the best of the authors’ knowledge, in the context 
of neurological disorders and injury (such as stroke), the use of such nonlinear metrics at the peripheral nerv-
ous system level has not been explored in the literature. In this paper, for the first time, we propose the concept 
of a nonlinear muscle network for stroke subjects and we explore the strength of such a nonlinear measure to 
characterize sensorimotor integration in these subjects.

Thus this paper focuses on the use of the functional muscle network as a potential biomarker for sensorimo-
tor integration after stroke. We investigate a novel method for assessing temporal connectivity across 16 upper 
limb muscles (8 in each arm) using a network of nonlinear information-theory-based intermuscular coupling, 
called InfoMuNet, derived from processing the full-spectrum of sEMG recordings (Fig. 1).

Thirty-two individuals with chronic post-stroke hemiparesis (21 males and 11 females, age: 57.9 ± 12.7 years, 
mean time since stroke: 46.4 ± 57.5 months, 15 with right hemiparesis and 17 with left hemiparesis) participated 
in a multiple-session grasp-and-lift experiment (Fig. 1c) during which their sEMG was recorded from 16 muscles, 
8 on each limb. In a previous work, we showed that fingertip force coordination in the affected hand changes 
after exposure to the same task using the less-affected hand12. Here, using sEMG, we quantify how sensorimotor 
exposure to the less-affected limb changes functional muscle coordination in the affected limb. The protocol 
utilizes alternating hand training (AHT), where the subject first performs the task with the less-affected hand to 
get exposed to sensory information and then performs the task with the affected hand (Fig. 1d).

The usefulness of the InfoMuNet approach is compared with that of the classical spectral and temporal metrics 
obtained using sEMG. The spectral and temporal features of the muscle activity signal (including RMS and PSD of 
the 16 sEMG channels) are compared with the degree, weighted clustering coefficient (WCC), mean shortest path, 
and global efficiency of InfoMuNet across the affected and less-affected limbs and various sensory conditions.

We hypothesized that (1) the connectivity metrics derived from InfoMuNet would sensitively capture changes 
in distributed muscle coordination in the affected limb after contralateral sensory exposure, whereas classical 
measures (i.e., RMS and PSD of sEMG) would not provide the needed separation power. In other words, although 
the absolute change in muscle activation may follow a heterogeneous pattern, the information sharing between 
muscles (that highlights coordinated projections of the CNS) shows an improved pattern after contralateral 
sensory exposure.

Moreover, we hypothesized that (2) InfoMuNet would show a discriminative sensitivity to contralateral 
sensory exposure to tactile, kinesthetic, and visual sensory inputs during task performance.
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Results
This study evaluates changes in sensorimotor integration during a functional grasp-and-lift task before and 
after exposure to the less-affected limb post-stroke. Thirty-two subjects with chronic post-stroke hemiparesis 
performed a grasp-and-lift task (Fig. 1c) under eight different sensory conditions where visual, kinesthetic, 
and tactile inputs were varied in a random manner (Fig. 1e) over two sessions. At the first session, the task was 
performed with the affected hand only while sEMG was recorded from eight muscles in the affected limb (pre-
exposure limb). In the second session, subjects performed the task first with the less-affected hand (exposure to 
preserved sensory information) immediately followed by the affected hand (post-exposure limb).

Subjects performed 112 trials each with the pre-exposure affected limb, post-exposure affected limb, and less-
affected limb (14 trials × 8 sensory conditions = 112 trials). For each sensory condition, two sets of 7 trials were 
performed, using a light and a heavy weight. The choice of the light and heavy weights was randomized between 
8 different weight combinations ranging from 250 to 425 (light) and 500–675 g (heavy) in 25 g increments. We 

Figure 1.   Grasp-and-lift task and InfoMuNet overview. (a) Electromyographic signals were recorded from 
eight muscles on each limb: Abductor Pollicis Brevis (APB), First Dorsal Interosseous (FDI), Flexor Digitorum 
Superficialis (FDS), Extensor Digitorum Communis (EDC), Flexor Carpi Ulnaris (FCU), Extensor Carpi 
Radialis Longus (ECRL), Upper Trapezius (UT), and Lower Trapezius (LT). The median InfoMuNet (i.e., 
the connectivity network of median mutual information between muscle pairs) across all subjects and trials 
indicates that the less-affected limb has the strongest connectivity during the grasp-and-lift task. The post-
exposure affected shows stronger connectivity trends than the pre-exposure affected limb, highlighting the 
potential effect of sensorimotor exposure. sEMG plots are representative activations for each muscle. (b) 
For each trial, the task consisted of grasping the instrument with the thumb and index finger and lifting the 
instrument. (c) The experiment was completed in two separate sessions. Subjects performed the task with the 
affected limb only (pre-exposure affected) in the first session. Subjects performed the task first with the less-
affected limb followed by the affected limb (post-exposure affected) in the second session. (d) The task was 
performed under eight sensory conditions. Subjects completed 14 trials for each sensory condition for a total 
of 112 trials (14 trials × 8 sensory conditions = 112 trials). (e) Mutual information I(X; Y) between signals from 
any  two muscles is computed using the individual entropies H(X), H(Y), and joint entropy H(X, Y). I(X; Y) was 
quantified between all muscle pairs to form the InfoMuNet for each trial.
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used the data from all the weight pairs for all subjects as one group because the preliminary analysis of the sEMG 
data did not indicate significant differences between light and heavy weights for the metrics used in this study.

Eight bipolar sEMG sensors (Delsys Inc, Natick, MA) were placed on the following muscles on each of the 
affected and less-affected limbs (Fig. 1a) over the muscle belly of the following muscles: Abductor Pollicis Brevis 
(APB), First Dorsal Interosseous (FDI), Flexor Digitorum Superficialis (FDS), Extensor Digitorum Communis 
(EDC), Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis Longus (ECRL), Upper Trapezius (UT), and Lower 
Trapezius (LT). Comparisons were made in the muscle activity of the pre-exposure affected, post-exposure 
affected, and less-affected limbs, considering the full task duration.

It should also be highlighted that for a clinically transferable robust sEMG-based biomarker, a linearly-trended 
behavior would be needed that monotonically changes going from pre-exposure affected, to post-exposure 
affected, to less-affected limbs in a consistent direction. This monotonicity is critical if it is claimed that a bio-
marker can detect subtle changes in the recovery process.

Classical spectrotemporal sEMG analysis.  The classical spectral and temporal analyses of muscle activ-
ity using rectified sEMG and PSD showed heterogeneous trends across the muscles involved in the task (Figs. 2, 
3). No consistent pattern was observed when comparing muscle activity in the pre-exposure affected, post-
exposure affected, and less-affected limbs across the subjects and muscles, as explained below.

Only the APB, ECRL, and LT muscles demonstrated significant differences across the pre-exposure affected, 
post-exposure affected, and less-affected limbs using PSD and RMS metrics (Fig. 2) (Friedman Chi2(2,62) 
′s > 6.8125, p′s < 0.05) . There was a decreasing trend in activation of the LT muscle on both RMS and PSD from 
pre-exposure affected to post-exposure affected, to less-affected limbs, whereas for the APB and ECRL muscles, 
the post-exposure affected limb trended to have the smallest RMS and PSD. Conformity scores (i.e., the ratio of 
the subjects that followed the median group trend to all subjects) indicated that ~ 30% of the subjects followed 
the median group trend for RMS and PSD even though statistically significant differences were noted. As we can 
see in Fig. 3, the ensembled medians of RMS and PSD do not provide any significant trend and the Friedman tests 
also fail to recognize group effects between the pre-exposure affected, less-affected and post-exposure affected 
limbs (RMS: Friedman Chi2(2,62) = 4.75, p = 0.0930 , PSD: Friedman Chi2(2,62) = 3.25, p = 0.1969 ). Only 22% 
of the subjects conformed with the ensembled RMS and PSD trends. Thus, while the classical spectrotemporal 
analyses of sEMG reveal potential changes in specific muscle activities from pre-to-post exposure to sensory 
information from the less-affected limb, the trends are not consistent across all muscles, and may not provide 
information about coordination across muscles involved in the task.

Time‑frequency analysis.  The time-frequency analysis provided the spectral power changes of the sEMG 
signal across the duration of the task using short-time Fourier Transform (STFT) (Fig. 4). The spectral power 
of the sEMG was divided into three spectral windows, 20–35 Hz ( β band), 35–60 Hz (low γ band), and 60–200 
Hz (high γ band), while the duration of the trials was normalized to ten temporal windows (0–10%, 10–20%, 
...). Overall, the spectral power had a decreasing trend from pre-exposure to post-exposure for the affected 

Figure 2.   RMS and PSD of sEMG across n = 32 subjects. (a) For each electrode, the median RMS of sEMG 
envelope is quantified across all trials, and conditions per subject. Differences in the RMS values were only 
significant for the APB, ECRL, and LT muscles based on the Friedman test. The conformity ratio (the percentage 
of the subjects that followed the median group trend) for the significant comparisons was C < 31%. (b) For each 
electrode, the median of mean-PSD is quantified across all trials and conditions per subject. The differences in 
PSD were significant for the APB, ECRL, and LT muscles based on the Friedman test. The conformity ratio for 
the significant comparisons was C < 34%.
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limb, as indicated in Fig. 4 by a blue hue. Only three muscles (FDI, APB and ECRL) demonstrated significant 
differences between the sessions for some part of the task duration (Fig. 4). ECRL showed significant spectral 
power decreases in β and low γ bands during the middle of the task. APB had also brief decreases in β and low 
γ at around 75% of the task duration. FDI’s spectral power slightly increased near the end of the task for the 
post-exposure compared to the pre-exposure trials. The comparison between the post-exposure affected and the 
less-affected limbs did not yield statistical significance except for brief periods of ECRL activity.

InfoMuNet analysis.  InfoMuNet was used to evaluate the nonlinear coupling of the eight muscles engaged 
in the functional task. Figures 1e and 5 show the median connectivity of the functional muscle network across 
the subjects, where for each subject the network was generated by computing the mutual information exchanged 
between each muscle pair. As expected, the results from the merged population indicate that the median mutual 
information degree in the functional muscle network increases monotonically from pre-exposure affected, to 
post-exposure affected, to the less-affected limbs, highlighting the functional importance and ease of interpret-
ability of this method (Fig. 5a). The mutual information heatmap shows that the post-exposure affected limb 
demonstrated stronger pairwise coupling than the pre-exposure affected limb, especially for the FCU-FDS, 
EDC-ECRL, and FDS-ECRL muscle pairs involved in grasping and lifting using wrist extension, and in the 

Figure 3.   Ensembled RMS and PSD across n = 32 subjects. For each subject, the median RMS values across 
all sEMG electrodes, all conditions, and all trials are quantified. Thus, there is a distribution of 32 ensembled 
RMSs for 32 subjects. The same method is used for generating the distribution of ensembled PSD (considering 
20 to 200 Hz). The Friedman test was not significant for either RMS or PSD of sEMG (RMS: Friedman 
Chi2(2,62) = 4.75, p = 0.0930 , PSD: Friedman Chi2(2,62) = 3.25, p = 0.1969 ). The conformity ratio was equal for 
both RMS and PSD (C = 22%).

Figure 4.   Time-frequency comparison of sEMG using STFT. (Left) The comparison of sEMG spectral power 
between pre-exposure and post-exposure affected limbs shows that FDI, APB, and ECRL muscles have overall 
decreases in spectral power during portions of the trials. (Right) The comparison of sEMG spectral power 
between post-exposure affected and less-affected limbs does not show significant spectral changes except 
for ECRL. The color of the boxes indicates the difference between the respective limbs normalized to the 
absolute maximum difference in each grid. Dots indicate a significant difference after accounting for multiple 
comparisons.
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UT-LT muscle pair involved in stabilizing the shoulder girdle (Fig. 5a). Importantly, the less-affected limb shows 
even stronger pairwise mutual information coupling than the post-exposure affected limb in these muscle pairs. 
Overall, the mutual information network became stronger pre-to-post exposure to the sensory information 
from the less-affected limb (Figs. 1e and 5).

As can be seen in Fig. 6, the mutual information degree (defined in the “Methods” section, a measure of 
mean connectivity of each muscle) of each muscle showed significant increases from the pre-exposure affected 
to post-exposure affected, to less-affected limbs (Friedman Chi2 > 50.8125, p < 0.001 , post-hoc p’s < 0.001 ). 
Overall, high conformity was observed, and interestingly ≥ 94% of the subjects conformed with this trend for 
the trapezius muscles (UT and LT).

Furthermore, additional network metrics also showed similar consistent trends from pre-exposure affected 
to post-exposure affected to less-affected limbs (Fig. 7). The mean mutual information degree (averaged across 
all muscles), overall showed 94% conformity. The mean WCC (defined in the “Methods” section, a measure of 
the extent to which the nodes, i.e. muscles, tend to group together), also increased significantly and consistently 
from pre-exposure affected, to post-exposure affected, to less-affected limbs and showed perfect conformity of 
100%. The mean shortest path (defined in the “Methods” section, a measure of network sparsity), decreased from 
the pre-exposure affected to post-exposure affected to less-affected limbs, with 94% conformity. In addition, the 
global efficiency (defined in the “Methods” section, a measure of overall network connectivity), increased from 
pre-exposure affected to post-exposure affected to less-affected limbs also with perfect conformity of 100%.

We also investigated the effect of sensory manipulation on the topological changes in the InfoMuNet. Avail-
ability of tactile, kinesthetic, and visual sensory inputs changed the mean degree, conformity, and difference 
between the post-exposure affected and less-affected limbs (Fig. 8). The mean mutual information degree 
increased from the pre-exposure affected, to post-exposure affected, to less-affected limbs for all sensory con-
ditions (Friedman Chi2 > 41.8125, p < 0.001 , post-hoc p’s < 0.002), as seen in Fig. 8a. The conformity was the 
highest at 97% with the lack of any sensory feedback (all blocked, Fig. 8a), suggesting that subjects had the most 
consistent behavior under this condition. The conformity consistently decreased as more sensory information 

Figure 5.   The median InfoMuNet (i.e., the connectivity network of median mutual information between 
muscle pairs) across all trials of all subjects is shown in two different formats. (a) The mutual information 
heatmaps across all subjects show that the pairwise mutual information increases across all nodes (muscles) 
from the pre-exposure affected to post-exposure affected and less-affected limbs. (b) The mutual information 
networks also show an increase in both pairwise mutual information (the edges’ line widths) and the muscles’ 
degrees (the nodes’ radii). MI = Mutual Information.

Figure 6.   Mutual information degree for individual muscles across all n = 32 subjects. For each subject, the 
mutual information degree was quantified for the median muscle network across all trials. All muscles showed a 
significant monotonic increase in degree from pre-exposure affected to post-exposure affected and less-affected 
limbs. The conformity for all muscles was > 80%. The UT and LT muscles had the highest conformity at ≥ 94%.
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was added and was the least at 75% when all tactile, kinesthetic, and visual sensory inputs were provided; this 
decreasing trend in conformity suggests that inter-individual differences exist in the availability and processing 
of multiple sensory inputs carried from the less-affected limb, which in turn, influences the functional muscle 
network connectivity in the affected limb after exposure. The importance of sensory information for muscle 
coordination was quantified by the ratio of the mutual information degree of the post-exposure affected limb to 
that of the less-affected limb. A mean ratio of 1 implies that the post-exposure affected limb has similar network 
behavior to the less-affected limb. In the presence of tactile, kinesthetic, and visual sensory feedback, the ratio 
was significantly higher (i.e., closer to one) than in the absence of sensory feedback (Fig. 8b) (Wilcoxon sign-rank 
test, p = 0.004). This result highlights the importance of the transfer of sensory input from the less-affected to the 
affected hand and its role in improving functional muscle network connectivity, which was robustly captured 
by the InfoMuNet approach.

Discussion
The results show that the information theory-based muscle network (InfoMuNet) can encode nonlinear func-
tional muscle coordination as a robust biomarker of sensorimotor integration after stroke with > 90% conform-
ity of the individuals to the group trends. For the first time, we show that the contralateral sensory exposure in 
chronic stroke patients can result in significant improvement of muscle coordination, quantified by InfoMuNet. 
This demonstrates the importance and potential for sensory-based rehabilitation and the possibility of improv-
ing muscle coordination in the chronic post-stroke population. The functional muscle network also exhibits 
high sensitivity to the contribution of specific tactile, kinesthetic, and visual sensory inputs for motor coordina-
tion. Our results highlight the role of sensory inputs from the less-affected limb to improve functional muscle 
coordination in the affected limb post-stroke, using the AHT protocol. On the other hand, the spectrotemporal 
characteristics of sEMG signals fail to capture such changes in muscle activity in a consistent manner. The results 
highlight the importance of the proposed functional muscle network for tracking progress towards recovery 
during rehabilitation.

The analysis of sEMG activity showed that muscles have a wide range of temporal and spectral variability 
during the grasp-and-lift task. Conventional temporal (RMS) and spectral (PSD) characterizations of sEMG 
activations show that specific muscles, specifically the APB and ECRL muscles demonstrate significant changes 
in activation from pre-to-post exposure in the affected limb, consistent with their importance in sensing object 
weight during the grasp-and-lift task as shown previously37,38. However, the conformity of subjects to the ensem-
bled median group trend was only 22%. The seemingly wider RMS boxplots for FDI, APB, ECRL, and EDC are 
likely related to the utility of these muscles during the task, different strategies subjects used to recruit these 
muscles, or potential compensatory mechanisms to successfully complete the tasks. The ensembled group trend 
was not statistically significant, indicating that subjects demonstrated heterogeneous spectrotemporal trends 
(Fig. 3) before and after exposure of the less-affected limb to the grasp-and-lift tasks. The time-frequency STFT 
analysis also demonstrated a similar pattern indicating that only the spectral power of FDI, APB and ECRL 
changed from pre-exposure to post-exposure in the affected limb, mainly in β and low γ bands (Fig. 4). The 
conventional metrics also produced inconsistent relationships across muscles (as seen in Fig. 2), suggesting 
that spectrotemporal features are not well-suited to use as a biomarker for coordination across muscle groups.

However, as hypothesized, we show for the first time that the InfoMuNet method provides a consistent, uni-
form gradient (Figs. 5, 6, 7, 8) which highlights its potential as a robust functional biomarker of coordination 
across muscle groups. The monotonicity of InfoMuNet was validated by computing the mutual information 
degree of network connectivity, and the results showed a consistent improvement in functional muscle network 

Figure 7.   The ensembled metrics of the mutual information network across all n = 32 subjects. For each 
subject, the median muscle network across all trials was computed. Then, the four metrics shown were 
computed for this ensembled network. All network metrics monotonically changed from pre-exposure affected 
to post-exposure affected and less-affected limbs. The mean WCC and global efficiency had perfect conformity, 
C = 100%. WCC: weighted clustering coefficient.
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connectivity from pre-to-post exposure in the affected limb and high discriminative power in distinguishing 
between the less-affected and post-exposure affected muscle networks. The objective measures of connectivity 
(e.g., degree and WCC) revealed a consistent trend, where the less-affected limb always had a better score when 
compared to the post-exposure affected limb. Similarly, the post-exposure affected limb demonstrated a better 
score compared to the pre-exposure affected limb across all muscles (Fig. 6); and the trend was consistent for 
the overall network as well (Fig. 7). Thus, for the first time, this paper shows that the connectivity between the 
muscles calculated using mutual information (i) is highest for the less-affected limb compared to the affected 
limb, (ii) increases in the affected limb after exposure to the less-affected limb, and (iii) provides ≥ 94% average 
conformity across the subjects (Fig. 7). To the best of the authors’ knowledge, this is the first time that informa-
tion theory has been used to generate a functional muscle network. This is also the first time that the functional 
muscle network has been used to track changes in sensorimotor integration after stroke.

Stroke tends to increase the variability in the firing rate of the alpha motor neurons39, which may explain 
why nonlinear coupling between muscles is lower in the affected limb. The high conformity of the subjects to the 
group trends and the high gradient uniformity of the trajectory across the less-affected, post-exposure affected, 
and pre-exposure affected limbs suggests that InfoMuNet can be used as a biomarker to distinguish differences 
between the affected and less-affected limbs, and track progress during rehabilitation and recovery. This paper 
provides the first evidence that, in contrast to the weak and heterogeneous performance of conventional metrics, 
InfoMuNet is a robust method to track motor coordination during functional task performance as shown here 
in the context of a sensory exposure paradigm. Moreover, since subjects were not selected based on the location 
of the lesion, it can be concluded that InfoMuNet was successful in capturing the changes in muscle connectivity 
despite the inherent heterogeneity in the stroke population.

Figure 8.   The mutual information degree across sensory conditions. For each subject and sensory condition, 
the median muscle network across all trials was computed. The mean degree was then calculated for that 
median muscle network. (a) For all conditions, the mean degree ascended monotonically with statistical 
significance from pre-exposure affected to post-exposure affected to less-affected limbs. (b) The ratio of the 
post-exposure affected to less-affected mean degree distributions was computed for all (none blocked) vs no (all 
blocked) sensory feedback conditions. Wilcoxon sign rank test shows a significant difference between the mean 
degree ratio distributions. The affected limb’s muscle network approached that of the less-affected limb with 
sensory feedback compared to without sensory feedback.
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The subjects in this study were in the chronic stage post-stroke and were not receiving active rehabilitation at 
the time of the study. Furthermore, the testing sessions were performed within a few days of each other. Hence, 
the changes in functional muscle connectivity cannot be attributed to natural recovery. Thus, exposure to the 
less-affected limb is the likely cause of improved network performance in the affected limb. In a previous study, 
we showed that sensorimotor exposure to the less-affected limb can improve fingertip force coordination in the 
affected limb after stroke12. However, this is the first time that changes in functional muscle network connectivity 
have been examined. Improved motor coordination in the affected limb after exposure to the less-affected limb 
may be due to the transfer of information at the spinal or supraspinal levels. Previous studies have shown that 
central pattern generators (CPGs) may be responsible for the transfer of learning across limbs40–42. CPGs can 
have spinal or supraspinal origins, hence further research is needed to determine the mechanism underlying 
this improvement43.

In this paper, we also investigated the differential effect of providing tactile, kinesthetic, and visual sensory 
inputs (Fig. 8). The results show that InfoMuNet is responsive to changes in sensory feedback and reflects how 
sensory information is used for muscle coordination during sensorimotor integration. It should be highlighted 
that as the sensory conditions changed, the difference in functional muscle network connectivity captured by 
InfoMuNet was statistically differentiable across the affected and less-affected limbs (Fig. 8). This further con-
firms the role that sensory inputs play in motor coordination, and InfoMuNet is robust enough to discriminate 
the effect of specific sensory inputs on task-specific functional motor coordination after stroke. Examining the 
ratio of the mean degree of connectivity between the affected and less-affected limbs between all-sensory vs no-
sensory feedback showed that the muscle network of the affected limb significantly improves toward that of the 
less-affected limb with the addition of sensory feedback (Fig. 8b). While the motor task could still be performed 
in the no sensory feedback condition, sensory feedback augmented sensorimotor control and task-specific inter-
muscular coordination, further reinforcing the use of InfoMuNet as a biomarker of sensorimotor integration.

Muscle synergy analysis is another approach to quantifying the activation patterns across muscles, in which 
an estimated low-dimensional vector of muscle weights (W) and a corresponding vector of time-varying activa-
tion coefficients (A) build the overall muscle activity44. The complexity of W can differentiate the motor skills 
and different control strategies, while A is indicative of how much each element of W is recruited for a given 
task. Synergy analysis has been successful in differentiating skilled versus non-skilled actions, various postural 
balance conditions, healthy subjects, and stroke patients45–47. However, previous studies did not indicate changes 
in W caused by stroke in the patient group (for example one W for the affected and another W for the less-
affected limb). In contrast, previous studies supported the notion of having the same W’s for both affected and 
less-affected limbs in stroke patients and emphasized the changes only in the activation coefficients (A)23,48. This 
suggests that synergy reflects mainly spinal control23 and does not indicate supraspinal changes associated with 
stroke. Hence, muscle synergy analysis may not be a robust biomarker for tracking progress in stroke rehabilita-
tion and recovery.

The strong statistics, high conformity, and high gradient uniformity of the results using InfoMuNet suggest 
that a mutual information-based connectivity approach can be used as an objective biomarker for monitoring 
recovery. Over 90% of the subjects conformed to the median group network trends, suggesting that the Info-
MuNet metrics are strong indicators for functional motor coordination after stroke and can sensitively capture 
changes during the course of recovery (Fig. 7). It should be highlighted that the InfoMuNet metrics had substan-
tially greater conformity than the RMS or PSD metrics and were robust to the inherent intersubject variability 
present in patients with stroke. Given that existing measures of motor function after stroke do not take sensory 
feedback into account14,15,49,50, InfoMuNet offers quantification of sensorimotor integration, not just motor capa-
bility, which is critical for coordinated functional performance. Major advantages in using InfoMuNet for the 
analysis of muscle activity are the objectivity of the metric, the ability to test sensorimotor integration, and the 
potential to provide real-time feedback on task performance.

This study examined a heterogeneous group of subjects with chronic stroke at a cross-section in time, preclud-
ing an understanding of the effect of time and intervention on post-stroke recovery of sensorimotor integration. 
Furthermore, subjects presented at various times post-stroke. We also did not control for the side of the stroke. 
Previous studies have suggested that hemispheric specialization and lesion location can affect motor control8. 
However, despite this heterogeneity, InfoMuNet emerged as a robust functional biomarker which speaks to its 
broadest applicability. In future studies, we will be able to tease out the effect of stroke-specific characteristics 
on motor coordination.

In conclusion, InfoMuNet is proposed as a novel, robust functional biomarker of muscle network connectivity 
required for task performance. It can be used to assess progress in sensorimotor integration and functional per-
formance in patients post-stroke. The results of this paper shed light on the importance of sensory-based motor 
training to promote healthier coordination of muscle activation. This is a significant observation for chronic 
post-stroke patients. In a grasp-and-lift task, InfoMuNet successfully differentiated intermuscular coordination 
in the affected limb after exposure to the less-affected limb. The objective nature of the network metrics and the 
> 90% conformity of individual subjects to the median group trend makes InfoMuNet a strong candidate for 
future closed-loop assessments of rehabilitation techniques, as it can evaluate both sensory and motor effects 
on task performance. Its responsiveness to sensory information makes it highly sensitive to even single-session 
rehabilitation interventions that may predict longer-term responsiveness to interventions, laying the foundation 
for precision rehabilitation. Future studies on functional muscle network characteristics in individual subjects 
and their responsiveness to short-term interventions, as well as their long-term effects, will help delineate the 
underlying neurophysiological processes that influence the recovery of functional muscle networks after stroke 
and other supraspinal neurodegenerative conditions.
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Methods
Thirty-two patients with chronic stroke (11 females, 21 males, 57.91 ± 12.7 years, mean time since stroke: 46.4 
± 57.5 months, 15 with right hemiparesis and 17 with left hemiparesis) participated in the study. The study was 
approved by the Institutional Review Board of the New York University (IRB No: S12-03117) and was conducted 
in accordance with the Declaration of Helsinki. All participants provided their written consent prior to participa-
tion in the study. The inclusion criteria were: ability to read/write in English, age > 18 yrs, radiologically verified 
stroke > 4 months old, moderate arm motor impairment (Fugl-Meyer Scale < 60/66), ability to reach, grasp and 
lift the test objects with the affected side as assessed by the specialist, willingness to complete all clinical assess-
ments and MRI, and comply with training protocols, ability to give informed consent and HIPPA certifications. 
The exclusion criteria were: sensorimotor impairments in the unaffected hand, severe visual or sensory impair-
ment, including neglect on the affected side, significant cognitive dysfunction (score < 24 on Folstein’s Mini 
Mental Status Examination), severe or unstable spasticity on treatment with Botulinum toxin or intrathecal 
baclofen, major disability (modified Rankin Scale > 4), and previous neurological illness, complicated medical 
condition, or significant injury to either upper extremity.

Grasp‑and‑lift task.  Subjects completed a series of grasp-and-lift tasks while their muscular activity was 
recorded (Fig. 1b). The task was to grasp a custom-made instrumented device using the thumb and index fingers 
and lift it by extending the wrist. The task was performed under eight randomly assigned sensory conditions that 
allowed or blocked a combination of tactile, kinesthetic, and visual feedback during the task (Fig. 1d). Vision was 
blocked using a blindfold. Tactile feedback was altered by placing a layer of foam on the subject’s grasping fin-
gertips. Kinesthetic feedback was limited by blocking movement of the wrist using a splint. The arm was placed 
on an elevated platform and the subject held the object in the air by grasping the device between the thumb and 
the index finger.

Subjects performed the study over two separate testing sessions: one where they used the affected hand only 
and a subsequent session during which subjects performed Alternating Hand Training (AHT), where they first 
grasped and lifted the object with the less-affected hand followed by the affected hand (post-exposure) (Fig. 1c). 
Subjects performed 7 repeated trials in two sets, each with a light and heavy weight for all sensory conditions. 
Each trial consisted of a single repetition of the grasp-and-lift motion. The less-affected limb trial was imme-
diately followed by the post-exposure affected trial. Subjects were given rest as required between trials. Using 
the non-parametric Friedman test, the sEMG data did not show significant differences for the spectrotemporal 
or network metrics. Therefore, we grouped all the weight pairs and performed the analysis on all trials. In total 
there were eight sensory conditions, and 14 (7 × 2 = 14) trials per sensory condition amounting to 112 trials 
each with the affected limb pre-exposure, with the less-affected limb, and with the affected limb post-exposure 
to sensorimotor information from the less-affected limb per subject.

Data acquisition and spectrotemporal analysis.  A wireless sEMG system (DE2.1 Sensors, Delsys Inc., 
Natick MA) was used to collect sEMG signals from 16 electrode locations, 8 in each limb (Fig. 1a). The recorded 
muscles were: Abductor Pollicis Brevis (APB), First Dorsal Interosseous (FDI), Flexor Digitorum Superficialis 
(FDS), Extensor Digitorum Communis (EDC), Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis Longus 
(ECRL), Upper Trapezius (UT), and Lower Trapezius (LT). The sEMG signals were pre-amplified and sampled at 
2000 Hz, then normalized to the maximum voluntary contraction of each muscle for a given subject. The maxi-
mum voluntary contraction was determined by asking the subject to perform maximal isometric contraction of 
the given muscle for 3s. The maximum activity over the peak 1s was used for normalization.

Data were processed offline using custom functions in MATLAB R2020b (Mathworks Inc., Natick, MA). 
Signals were band-pass filtered between 20 and 200 Hz, with notch filters at multiples of 60 Hz. The PSD was 
calculated using the filtered signal by applying Welch’s method with a Hamming window of length 0.85s and 
50% overlap. For Figs. 2 and 3, the mean PSD of sEMG in 20–200 Hz was considered for each trial. The Hilbert 
transform was applied on the filtered and rectified signal to obtain the sEMG envelopes, which were used for 
RMS computation. For both the spectral (PSD) and temporal (RMS) feature computation, the full task duration 
was considered.

Time‑frequency analysis.  The time-frequency analysis provides the changes in the frequency context of 
the multiple sEMG channels over the conduction of the task. Here we utilized the STFT approach to generate 
the time-frequency analysis. The task’s start time was defined as when the linear envelope increased beyond 10% 
of the maximum value and the end time was defined as when the falling linear envelope decreased to less than 
10% of the maximum value. The STFT of each muscle was computed using a Hamming window, Fast-Fourier 
Transform (FFT) length of 0.212s, and 50% overlap. Afterward, the STFT results were reduced to ten data points 
representing normalized segments of the task (0–10%, 10–20%, ...). The mean spectral power in the 20–35 Hz 
( β band), 35–60 Hz (low γ band), and 60–200 Hz (high γ band) frequency ranges were quantified for each trial. 
The median across each subject’s trials was computed for each limb. The differences (i) between post-exposure 
affected and pre-exposure affected limbs and (ii) between post-exposure affected and less-affected limbs were 
quantified for each muscle, frequency band, and time segment with the median across the 32 subjects. The differ-
ence values in the boxes were normalized by the maximum absolute difference in each grid of Fig. 4, hence each 
grid has a range between − 1 and 1. The color of each box is scaled in proportion to the difference.

The InfoMuNet approach.  After band filtering between 20 and 200 Hz (with notch filters at multiples of 
60 Hz), the sEMG signals were used to quantify the mutual information and construct the connectivity network 
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(InfoMuNet). Mutual information is a metric derived from information theory, which captures nonlinear cou-
plings between two signals x(t) and y(t), by computing their individual and joint entropies.

Before computing the entropy, each signal is normalized over the full task duration and then discretized 
by using the Freedman-Diaconis51 method to choose the number of bins, Nb . The discretized version of x(t) is 
denoted as X, and discretized y(t) is Y. The probability distribution, PX(Xi) , gives the distribution of the discre-
tized signal X and was computed by constructing a histogram from all time samples per trial, with Nb equally 
spaced bins. The entropy of X, H(X)—i.e. the uncertainty of x(t)—is given as:

The same method was used to construct the probability distribution for Y and hence compute H(Y), the 
uncertainty associated with y(t). The joint entropy, H(X, Y), or joint uncertainty, is inversely proportional to the 
signals’ inter-dependence and is the final term needed for finding the mutual information. For this, the joint 
probability distribution for X and Y, PX,Y (Xi ,Yj) should first be constructed by finding the empirical probability 
that Xi and Yj are both in a given bin. Then, the joint entropy, H(X, Y) is given as:

Considering the entropy Venn diagram (Fig. 1d), the mutual information is computed as:

Note that I(X; Y) can alternatively be computed as:

where H(X|Y) and H(Y|X) represent the novel entropies of X and Y respectively.
Mutual information (I(X; Y)) can be defined as the amount by which a measurement of y(t) reduces the 

uncertainty of estimating x(t)52. When x(t) is completely independent of y(t), the mutual information is zero. 
However, if x(t) and y(t) are identical time series, the mutual information is maximal. Unlike other connectiv-
ity measures such as Pearson correlation, the mutual information (I(X; Y)) between two signals is capable of 
capturing nonlinear and cross-frequency relations53–55. For example, if y(t) and x(t) share a sinusoidal relation 
( y(t) = sin(x(t)) ), the resultant I(X; Y) is maximal while the computed Pearson correlation is approximately 0.

The median of mutual information for each muscle pair across trials was quantified, resulting in the median 
muscle network, which can be represented by adjacency matrix A. Using A, the following network connectivity 
metrics (nonlinear temporal features) were determined: (1) network degree, (2) weighted clustering coefficient 
(WCC), (3) shortest path, and (4) global efficiency.

1.	  The (mean) network degree gives an average connectivity for the network. The degree of a node ( Di ) is the 
mean mutual information defining the edges connected to that specific node, as given below:

where N is the number of nodes. Then, mean network degree, D̄ =
∑N

i=1 Di , is the mean of all nodes’ degrees.
2.	  Mean WCC gives the measure of the extent to which nodes in a graph tend to group together. A node’s 

weighted clustering coefficient ( WCCi ) gives a relative measure of how well node i is connected to its neigh-
bors ( Aij ,Aik ) while also accounting for the neigbors’ interconnection ( Ajk ). A node’s clustering coefficient 
( CCi ) can be considered the sum of the triangles ( 

∑

i ti ) connected to node i, normalized by the maximum 
possible value56.

	   Each triangle’s value will be the product of the three edges, ti = AijAikAjk . The weighted adjacency matrix 
Ã is scaled by the maximum connection in the network, hence Ãij = Aij/max(A) . The node’s weighted clus-
tering coefficient WCCi is then defined as:

	   A node which has (i) 0 connectivity to its neighbors or (ii) has neighbors whose interconnections are all 0 
will have WCCi = 0 , while a node which is (i) maximally connected to its neighbors and (ii) has neighbors 
whose interconnections are all maximal has WCCi = 1 . Note that the value of WCCi is more dependent on 
node i’s connections to its neighbors ( Ãij , Ãik terms) rather than the neighbors’ interconnections ( Ãjk term). 
The mean WCC, WCC = ( 1

N )
∑N

i=1 WCCi , is the mean WCC over all nodes.

(1)H(X) = −

Nb
∑

i=1

PX(Xi)log2PX(Xi).

(2)H(X,Y) = −

Nb
∑

i=1

Nb
∑

j=1

PX,Y (Xi ,Yj)log2PX,Y (Xi ,Yj).

(3)I(X;Y) = H(X)+H(Y)−H(X,Y).

(4)I(X;Y) = H(X,Y)−H(X|Y)−H(Y |X).

(5)Di =

(

1

N − 1

) N
∑

j=1,j �=i

Aij ,

(6)CCi =
2
∑

i ti

(N − 1)(N − 2)

(7)WCCi =
2

(N − 1)(N − 2)

∑

j,k

(ÃijÃikÃjk)
(1/3)



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13029  | https://doi.org/10.1038/s41598-022-16483-x

www.nature.com/scientificreports/

3.	  The mean shortest path, also called characteristic path length, is inversely proportional to how well the net-
work is connected overall. The shortest path between a node pair (muscle i, and muscle j) is defined as the 
minimum “connectivity path”(Lij ) between two nodes. A connectivity path between nodes k and l is 1/Akl 
. However, the shortest path is the minimum sum of paths to travel from k to l. The shortest path between 
all nodes in the network was computed using Dijkstra’s algorithm57, and the mean shortest path Lij was cal-
culated. The mean shortest path is bounded between 1 (a very well-connected network) and ∞ (a network 
with ubiquitously zero connectivity).

4.	  Global efficiency is directly proportional to how well the network is connected overall. The efficiency (E) of 
a network is defined as:

	   The efficiency (E) is normalized by the ideal efficiency ( Eid ) to give the global efficiency, GE:

which, unlike mean shortest path, is bounded between 0 and 1. A network with perfect connectivity will 
have GE = 1 , while one with no connectivity will have GE = 0.

Statistical analysis.  The Kolmogorov-Smirnov test for normality rejected the normal distribution hypoth-
esis for the median PSD, RMS, and connectivity metrics across subjects (PSD: p < 0.001 for all of pre-exposure 
affected, post-exposure affected, and less-affected, RMS: p < 0.001 for all of pre-exposure affected, post-exposure 
affected and less-affected, connectivity metrics: p < 0.001 for all of pre-exposure affected, post-exposure affected and 
less-affected). Therefore, non-parametric statistical tests were used in our analysis. The Friedman test was used to 
compare spectrotemporal and connectivity measures between the pre-exposure affected, post-exposure affected, 
and less-affected limbs. The Wilcoxon signed-rank test was used for post-hoc tests if the Friedman revealed 
significance. Wilcoxon signed-rank test was used to determine the influence of sensory inputs on the network 
mean degree ratio. Wilcoxon signed-rank test was used to compare (i) pre vs. post-exposure affected limbs and 
(ii) post-exposure affected vs. less-affected limbs during the time-frequency analysis. The presence of a dot in 
Fig. 4 indicates a significant difference in the comparison for that particular muscle, frequency band, and time 
segment. Bonferroni correction was used to account for the multiple comparisons for the post-hoc tests. The 
significance level for all tests was set at 0.05.

Conformity was quantified as the ratio of the subjects that followed the median group trend. The percentage 
of the individual subjects that had the same trend as the median group trend was then measured.

To compare the effect of sensory information on the muscle network, the distribution for mean degree ratio 
of the affected to less-affected sides was computed for the AHT session (Fig. 8b). This is calculated by finding 
the ratio of the mean degree of connectivity in the post-exposure affected to less-affected limbs, for each of the 
32 subjects.

Data availability
All of the data supporting the results in this study are available within the paper and its Supplementary Informa-
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