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Abstract—Objective: Objective evaluation of physiologi-
cal responses using non-invasive methods for the assess-
ment of vocal performance and voice disorders has at-
tracted great interest. This paper, for the first time, aims
to implement and evaluate perilaryngeal-cranial functional
muscle networks. The study investigates the variations
in topographical characteristics of the network and the
corresponding ability to differentiate vocal tasks. Method:
Twelve surface electromyography (sEMG) signals were col-
lected bilaterally from six perilaryngeal and cranial mus-
cles. Data were collected from eight subjects (four females)
without a known history of voice disorders. The proposed
muscle network is composed of pairwise coherence be-
tween sEMG recordings. The network metrics include (a)
network degree and (b) weighted clustering coefficient
(WCC). Results: The varied phonation tasks showed the
median degree, and WCC of the muscle network ascend
monotonically, with a high effect size (|rrb| ∼ 0.5). Pitch
glide, singing, and speech tasks were significantly distin-
guishable using degree and WCC (|rrb| ∼ 0.8). Also, pitch
glide had the highest degree and WCC among all tasks
(degree> 0.7, WCC> 0.75). In comparison, classic spec-
trotemporal measures showed far less effectiveness (max
|rrb| = 0.12) in differentiating the vocal tasks. Conclusion:
Perilaryngeal-cranial functional muscle network was pro-
posed in this paper. The study showed that the functional
muscle network could robustly differentiate the vocal tasks
while the classic assessment of muscle activation fails to
differentiate. Significance: For the first time, we demon-
strate the power of a perilaryngeal-cranial muscle network
as a neurophysiological window to vocal performance. In
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addition, the study also discovers tasks with the highest
network involvement, which may be utilized in the future to
monitor voice disorders and rehabilitation.

Index Terms—Voice disorder, intermuscular coherence,
surface electromyography, neurophysiology.

I. INTRODUCTION

MORE than 17 million people in the United States are
estimated to suffer from dysphonia (a voice disorder)

each year [1], [2]. Excessive voice use and maladaptive compen-
satory muscle tension in response to underlying neurological or
physiological laryngeal disease are considered to be potential
roots for voice disorders such as muscle tension dysphonia
(MTD) [3]. The laryngeal muscles are internal to the neck and
require invasive access for direct examination. However, it is
suggested that the perilaryngeal, cervical and cranial muscles
may show activity alterations in subjects with dysphonia [4],
which can help with the diagnosis using surface electromyogra-
phy (sEMG).

The current methods for monitoring the function of laryngeal
muscles include intramuscular EMG, external laryngeal palpa-
tion, and laryngeal endoscopy [5]–[11]. Although these methods
have provided much information about muscle activation and
function during voicing, they are invasive, uncomfortable, and
subjective. Intramuscular EMG requires inserting small wires
into the muscle using a needle to measure relative neuromuscular
activity. Laryngeal endoscopy involves placing a flexible endo-
scope through the nose or a rigid endoscope through the mouth to
visualize the gross anatomy and movements of the vocal folds. It
requires a trained specialist to perform and subjectively interpret
the findings. Manual palpation of the larynx and perilaryngeal
musculature is easy to perform but does not provide any quanti-
tative or standardized measure of muscle tension. Additionally,
these evaluation methods can disturb the normal function of the
muscle during the examination (for example, due to the pain),
which can affect the accurate assessment.

Recording sEMG is a non-invasive technique that can poten-
tially provide objective information about perilaryngeal muscle
activity during voicing based on temporal and spectral charac-
teristics of the muscle signal measured at the skin surface. It
should be mentioned that discriminative differences have been
suggested in the classic literature [4], [12] when comparing
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spectrotemporal features of sEMG for patients with MTD and
healthy controls, yet recent studies with larger patient pop-
ulations failed to show significant differences in the classic
spectrotemporal sEMG metrics [9], [13]. As a potential reason
for this inconsistency, Van Houtte et al. suggested that the earlier
studies may have included patients with other comorbidities or
with secondary illnesses affecting the results, and that could
be why in recent studies, when controlling only for MTD, the
discriminative power of classic features of sEMG dropped [13].
This calls for more advanced functional measures that can
provide a holistic analysis of the distributed motor control on
perilaryngeal muscles.

In neuroscience literature, coherence analysis has been used in
the context of brain connectivity to detect how different regions
of the brain are synchronized (or functionally coupled) during
different tasks, and this measure has been used for detecting
the degrees of several central nervous system conditions, such
as Parkinson’s Disease [14], [15]. More recently, using coher-
ence analysis, the fluency of corticomuscular connectivity has
also been investigated to understand how the central nervous
system communicates with the peripheral nervous system [16],
[17]. Similarly, the functional muscle network is an emerging
concept that uses simultaneous multi-channel sEMG to decode
how various muscle groups are synergistically synchronized
during various motor tasks [18]–[20]. Intermuscular coherence
networks have been recently used to holistically investigate the
muscular system during various gait tasks and uniquely discrim-
inate subtle differences in lower limb functions in non-disabled
adults [21], [22].

To the best knowledge of the authors, the concept of functional
muscle networks has not been used at the perilaryngeal and
cranial levels. Some efforts have been conducted to assess beta-
band (15-35 Hz) coherence between two anterior neck muscles
during voicing, which showed some discriminative power to
indicate hyperfunction and differences between control subjects
and patients with vocal nodules [23], [24]. Expanding from a
single coherence measurement in specific frequency bands to a
wideband intermuscular coherence network increases the possi-
bility for monitoring motor functions or impairments due to the
wider spectral and spatial distribution of the analysis. Thus, it is
imperative to understand the power of the perilaryngeal-cranial
muscle network and the corresponding relationship with various
vocal functions.

The purpose of this study is to quantify the perilaryngeal-
cranial muscle network characteristics of a series of vocal tasks
for healthy subjects. We hypothesize that in non-disabled sub-
jects increasing the loudness and pitch (i.e., vocal frequency)
will change the network connectivity in a manner that can be
registered using topographical characteristics of the network,
such as degree and clustering coefficient. In this study, to
conduct a comparative analysis, the classical spectrotempo-
ral features are also quantified to determine if the tasks with
stronger muscle networks also consistently elicit statistically
distinguishable spectrotemporal muscle activity. We show that
the muscle network provides robust and statistically consistent
discrimination for increasing loudness and pitch, suggesting that
the perilaryngeal-cranial muscle network can indeed be used to

detect subtle differences in vocal tasks, while the conventional
spectrotemporal features fail to function accordingly.

II. METHODS

Eight healthy subjects (four males, four females, 33.38 ±
9.32 years) participated in the study. The institutional review
board of the New York University Grossman School of Medicine
approved the study, and subjects provided their written consent
after they received the study description. Subjects denied any
history of dysphonia or neck and cervical-related injuries.

A. Experimental Procedure

Subjects performed a series of vocal tasks, each of a different
type or while varying tonal parameters (Fig. 1(b)). The first
group of tasks involved making a maximally sustained /a/ sound
at a constant pitch and volume. With two levels of loudness and
two levels of pitch, in total, there were four varied phonation (/a/
sound) tasks: 1) habitual loudness, habitual pitch, 2) elevated
loudness, habitual pitch, 3) habitual loudness, high pitch and 4)
elevated loudness, high pitch. Subjects were instructed to sustain
the /a/ sound for as long as was comfortable. Subjects performed
three trials of each of loudness and pitch combinations before
moving to the next tasks. The second group of tasks included
single repetition vocal exercises, namely (i) pitch glide, (ii) spon-
taneous speech, and (iii) singing. Pitch glide involved starting
to intone at a low pitch and smoothly increasing to a final high
pitch [25]. The spontaneous speech task involved responding
to the prompt, “tell me how to make a peanut butter and jelly
sandwich,” in a typical conversational voice, while the singing
task involved singing ‘Happy Birthday’ in a comfortable key
chosen by the participant. The third group of tasks involved
reading the first full paragraph of The Rainbow Passage [26],
a standard reading passage used to evaluate the voice, at three
levels of loudness: habitual, elevated, and whispering.

In this work, sEMG signals were recorded from twelve sen-
sors, using the wireless Trigno sEMG system (Delsys Inc.,
Natick, MA), with a sampling frequency of 1259 Hz and an
on-board 2nd-order high-pass filter at 20 Hz (Fig. 1). Four
bipolar Trigno Mini sensors were used for the inner cervical
muscles (inferior and superior infrahyoid, bilaterally), while
eight bipolar Trigno Avanti sensors were used for Masseter, Su-
perior Sternocleidomastoid, Inferior Sternocleidomastoid, and
Trapezius. With regard to palpation, subjects were instructed to
(i) clench their teeth to identify masseter, (ii) look left and right to
identify lower and upper sternocleidomastoid, (iii) look up and
down to identify the infrahyoid muscles, (iv) move shoulders
forwards and backward before staying a neutral position to
identify trapezius muscles. The skin surface was thoroughly
wiped prior to sensor placement. Sensors were placed parallel
to the direction of the muscles. In order to minimize the noise
content of the recorded signals, subjects were instructed not to
move their head during the task.

Following the recording, signals were pre-processed using
MATLAB R2020b (MathWorks Inc. Natick MA). The first and
last 1 s of all trials were clipped out, and other trials were clipped
further in the case of a head movement at the beginning or at the
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Fig. 1. (a) Six sensors were placed on each side of the neck at Masseter, Superior Sternoclediomastoid (Superior SCM), Superior Infrahyoid,
Inferior Infrahyoid, Inferior Sternocleidomastoid (Inferior SCM) and Trapezius. (b) Subjects performed vocal tasks, classified as varied phonation,
single repetition, or reading. Varied phonation tasks involved intoning /a/ at defined loudness and pitch levels. Single repetition tasks included pitch
glide, singing, and speech. Reading tasks involved reading a passage at different loudness levels. (c) sEMG was recorded using the wireless Trigno
system (Delsys Inc., Natick, MA) with eight Avanti and four Mini sensors (blue head). An exemplar recording from all perilaryngeal and cranial
muscles is shown for the pitch glide task. Note how the amplitude level increases as the task develops for the infrahyoid and SCM muscles in
particular.

end. Afterward, the signals were filtered with a high-pass filter at
20 Hz, a band-stop filter at 57.5–62.5 Hz for power-line noise,
and a low-pass filter at 100 Hz. All filters were Butterworth
4th order zero-phase. For all of the analyses, we considered
the 20–100 Hz range since the frequency bands of interest
for intermuscular coherence networks generally include beta
(14–30 Hz) and gamma (30–100 Hz) bands. Exemplar perila-
ryngeal and cranial muscle signals during pitch glide are shown
in Fig. 1.

B. Muscle Signal Analysis

Muscle networks were constructed for all tasks, using coher-
ence. Magnitude squared coherence, Cxy between two signals
x(t) and y(t) is:

Cxy =
|Pxy(f)|2
PxxPyy

(1)

where Pxx and Pyy are the power spectral densities (PSDs)
and Pxy is the cross power spectral density (CPSD). To com-
pute the coherence, Welch’s overlapped averaged periodogram
method [27] was utilized with a Hamming window of 2048
samples (1.63 ms) and 50% overlap. The maximum coherence
component in the was selected for each sensor pair. Using this
maximum coherence value, muscle networks were constructed
for each trial. Each node in the network represents a muscle, and
the width of each line illustrates the pairwise muscle coherence.
In the case of tasks that had multiple trials, the median network
across trials was computed.

The degree of each node, Di, is the average of all edges
connected to the node. If the muscle network is represented by
adjacency matrix A, Di is defined as:

Di =

(
1

N − 1

) N∑
j=1,j �=i

Aij , (2)
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whereN is the number of nodes. A node that has no connectivity
with other nodes will have a degree, Di = 0, while a node that
is perfectly connected to other nodes will have Di = 1.

A node’s weighted clustering coefficient (WCCi) gives the
measure of how well that node is connected to its neighbors. The
weighted clustering coefficient is defined as:

WCCi =

∑
j �=i,

∑
k �=i,j �=k AijAikAjk∑

j �=i,
∑

k �=i,j �=k AijAik
(3)

A node that is not connected to its neighbors will have a weighted
clustering coefficient,WCCi = 0, while a node that is very well
connected to its neighbors will have WCCi = 1.

Global efficiency is directly proportional to how well the
network is connected overall. The efficiency (E) of a network
is defined as:

E =
1

N (N − 1)

∑
i �=j

1

Lij
. (4)

where Lij is the shortest path between nodes i and j [28]. The
efficiency (E) is normalized by the ideal efficiency (Eid) to give
the global efficiency, GE:

GE =
E

Eid
, (5)

which is bounded between 0 and 1. A network with perfect
connectivity will have GE = 1, while one with no connectivity
will have GE = 0.

In order to provide a comparison between the muscle co-
herence network and the conventional spectrotemporal metrics,
muscle activations were quantified in the time and frequency
domains. The time-domain activation was quantified by finding
the root mean square (RMS) value across the trial duration.
With regard to the spectral domain, PSD was computed using
Welch’s method [27] and the median PSD across 20–100 Hz was
computed. Furthermore, the median frequency was computed
for each task. The median frequency is defined as the frequency
at which the area under the PSD graph is divided in two. The
median value across trials was used for PSD, median frequency,
and RMS when there were multiple trials.

C. Statistical Analysis

In order to evaluate the statistical trends observed in coherence
muscle networks, a coherence distribution was constructed for
each task (as later will be discussed in Fig. 5). Each distri-
bution consisted of degree and weighted clustering coefficient
for all nodes across all subjects’ muscle networks, giving n =
#subjects×#nodes = 8× 12 = 96. Similarly, distributions
were constructed for RMS, PSD, and median frequency (n = 96
for all). The Kolmogorov-Smirnov test for normality rejected the
normal distribution hypothesis for the coherence, RMS, PSD,
and median frequency distributions. Therefore, nonparametric
statistical tests were used in our analysis. The Friedman test
was used to compare tasks in each group (i.e., varied phonation,
single-repetition, reading). The Wilcoxon signed-rank test was
used as a posthoc test if the Friedman test revealed significance.
The significance level, α, for all tests was initially set at 0.05. To

adjust for multiple comparisons, the Bonferroni correction was
applied, dividing α by the number of comparisons.

Finally, by using the rank-biserial correlation, the effect size of
the non-normal distributions was quantified [29]. In this regard,
|rrb| was used for measuring the rank-biserial correlation. A
higher value means that the effect size is larger. For example,
as can be seen in Fig. 5(b), the coherence degree for single
repetition tasks has a very high effect size (|rrb| = 0.83), and
the difference between tasks is even visually clear. On the other
hand, the coherence degree for reading tasks has a low effect
size (|rrb| = 0.1), as there is not a clear relationship between
coherence and reading task loudness.

III. RESULTS

A. Coherence Networks

The median network across subjects displays a visible differ-
ence between vocal tasks, e.g., between pitch glide and speech
(Fig. 2). Similarly, Fig. 3 shows that the mean degree of the
network changed by the task for all subjects. Interestingly, the
mean degree showed a monotonic increasing trend in response to
both raised loudness and pitch for the varied phonation tasks, and
pitch glide appears to have the highest coherence of all 10 tasks
(Fig. 3). Mean degree showed a monotonically decreasing trend
from pitch glide to singing to speech. Looking at the adjacency
matrices corresponding to the intermuscular coherence networks
confirms this observation and shows that there appears to be
little difference in the observed network for reading tasks with
different loudnesses (Fig. 4).

In order to support the initial observations of the coherence
network differences between the vocal tasks, coherence distri-
butions were constructed by including all nodes in the subjects’
intermuscular network, measured using degree and weighted
clustering coefficient (Fig. 5). For the varied phonation tasks,
the task-wise network degree and weighted clustering coeffi-
cient median were monotonically ascending with increasing
pitch and loudness, and all tasks were statistically different
from each other (Friedman Chi2(3,285) > 136.62, p < 0.05,
posthoc Wilcoxon signed-rank test: all six pairwise comparisons
p < 0.001). The network’s global efficiency showed a trend of
monotonically increasing coherence with pitch and loudness for
5 out of 8 subjects. Moreover, the effect size of the network met-
rics indicated quite a high value (degree: |rrb| = 0.48, weighted
clustering coefficient: |rrb| = 0.5). For the single repetition
tasks, the median of network degree and weighted clustering
coefficient was decreasing monotonically, with the pitch-glide
having the highest network degree and weighted clustering co-
efficient at both greater than 0.7 (Friedman Chi2(2,190) > 186.18,
p < 0.05, post-hoc Wilcoxon signed-rank test for all three
pairwise comparisons, p < 0.001). Furthermore, the global
efficiency trend was consistent and decreasing across all eight
subjects. The rank biserial correlation of the network metrics
also indicated a very high effect size (degree: |rrb| = 0.83,
weighted clustering coefficient: |rrb| = 0.85). The degree and
weighted clustering coefficient of habitual were higher than
whispered reading ((Friedman Chi2(2,190) > 4.77, p< 0.05, post-
hoc Wilcoxon signed-rank test: p < 0.008) while the weighted
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Fig. 2. Coherence muscle networks for each vocal task were created from twelve sEMG sensors placed bilaterally on the neck area. The width
of each line denotes the pairwise coherence between the two connected muscles, which is equal to the maximum coherence component in the
20–100 Hz range. In the case of tasks that had multiple trials, the median network across trials is shown. Each node radius is equal to the degree
(mean of coherences involving that node). The line widths and node radii seem largest for /a/ with elevated loudness, high pitch, and pitch glide
tasks.

Fig. 3. Network mean degree for each task. The bar depicts the
median value across subjects. Individual subject values are denoted
by dots. For the subject median, the mean degree shows an increas-
ing trend starting from the first task (habitual loudness, habitual pitch)
and continuing incrementally until pitch glide. Network connectivity then
shows a decreasing trend from pitch glide to singing to speech. Finally,
reading tasks seem to have little difference between each other.

clustering coefficient of habitual was higher than loud reading
(p = 0.001). However, other task pairs failed to show significant
differences for the post-hoc test. Global efficiency did not indi-
cate a consistent trend amongst subjects for the reading tasks.
Moreover, for the reading task set, the effect size was low for
the network metrics (degree: |rrb| = 0.08, weighted clustering
coefficient: |rrb| = 0.1).

Since one of the secondary aims of this study is to suggest a
suitable candidate task(s) for monitoring the effect of therapy,
the tasks which had produced the highest network metrics were
identified. For this, three tasks were selected, which had resulted
in the highest response in Fig. 5, when compared within their
categories. The selected three tasks are (i) the varied phonation
task with elevated loudness and high pitch, (ii) pitch glide,
and (iii) reading at habitual loudness, and results are given in
Fig. 6. Both network degree and weighted clustering coefficient
were significantly different from each other for all comparisons
(Friedman Chi2(2,190) > 149.08, p < 0.05, post-hoc Wilcoxon
signed-rank test: all three pairwise comparisons p < 0.001).
Moreover, pitch glide had the highest network degree (median
value ∼ 0.7) and weighted clustering coefficient (median value
∼ 0.75), even higher than the varied phonation task with elevated
loudness and high pitch (degree: median value∼ 0.55, weighted
clustering coefficient: ∼ 0.6). Reading at habitual loudness had
a lower degree (median value ∼ 0.21) and weighted clustering
coefficient (median value ∼ 0.22) than the other two tasks.
This suggests that pitch glide generates the maximum response
of the network, which can be considered potentially the most
responsive and suitable task for identifying abnormalities.

B. Spectrotemporal Metrics

To compare the ability of spectrotemporal metrics to distin-
guish different tasks, statistical analyses on RMS, PSD, and
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Fig. 4. The median intermuscular coherence network adjacency matrix (12 rows × 12 columns = 144 squares) across subjects was computed for
each vocal task. In the case of tasks that had multiple trials, the median adjacency matrix across trials was first computed. Each square represents
the pairwise maximum coherence between the two muscles from the corresponding row and column and the color is proportional to the pairwise
coherence. Since the connectivity is undirected, the adjacency matrix is symmetrical. The highest pairwise coherences are observed for the elevated
loudness, high pitch and pitch glide tasks.

median frequency of sEMG were conducted. Distributions for
each of the three aforementioned quantities were constructed
by considering all nodes across all subjects (n = #subjects x
#nodes = 96). The mean value across each distribution was
computed for network and spectrotemporal metrics to form the
comparative Table I. The level of cervical muscle activation as
measured by RMS was low by sEMG standards, with a range of
4− 11μV for the task mean values (Fig. 7(a), Table I).

For the varied phonation tasks, the median PSD of louder tasks
was higher than habitual loudness tasks (p < 0.008). However,
the overall effect size of varied phonation tasks (RMS: |rrb| =
0.08, PSD: |rrb| = 0.07, median frequency: |rrb| = 0.06) was
quite small. For single repetition tasks, RMS and PSD did not
show a clear trend (Fig. 5(b)). However, median frequency of
pitch glide was higher than other tasks (p < 0.001), |rrb| =
0.12. PSD and RMS showed increased values for loud reading

(Fig. 5(c)). All distributions were different from each other
(RMS: p < 0.015, PSD: p < 0.01) but the rank biserial correla-
tion, |rrb| = 0.12, suggests a weak effect size.

IV. DISCUSSION

The results show that the perilaryngeal-cranial intermuscular
coherence network can distinguish both changes in vocal param-
eters (i.e., loudness and pitch) and different vocal tasks. The mus-
cle network quantifies the spectral synchrony and can robustly
capture small changes associated with vocal output. The strong
performance of the muscle network is demonstrated initially by
the network visualization, and then statistical analysis using the
network metrics (degree and weighted clustering coefficient)
confirmed the observed trends. With regard to the vocal tasks,
two important statistically robust trends are identified as follows:
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Fig. 5. Statistical results for network metrics of the three groups of tasks. The coherence muscle network was constructed for each task, and
produces 12 node values for each of degree and weighted clustering coefficient (WCC). For each distribution of degree and weighted clustering
coefficient, all node values for all subjects are included (12 nodes × 8 subjects = 96 data points). For global efficiency, a singular value was obtained
for each subject’s muscle network. (a) For varied phonation tasks, intermuscular network degree and weighted clustering coefficient increase
monotonically with raised loudness and pitch, with statistical significance (all six taskwise comparisons: p < 0.001). The adjusted significance
level was α′ = 0.05/6 = 0.0833. The effect size (|rrb|) is quite high for both degree (|rrb| = 0.48) and weighted clustering coefficient (|rrb| = 0.5).
(b) For single repetition tasks, intermuscular network degree and weighted clustering coefficient decrease monotonically from pitch glide, to
singing, to speech, with statistical signficance (all three taskwise comparisons: p < 0.001). The adjusted significance level was α′ = 0.05/3 =
0.0167. The effect size (|rrb|) is very high for both degree (|rrb| = 0.83) and weighted clustering coefficient (|rrb| = 0.85). All eight subjects’ global
efficiency bar plots follow the monotonically decreasing pattern from pitch glide to singing to speech. (c) For reading tasks, there are no visible
trends in degree, weighted clustering coefficient or subject-wise global efficiency. The degree and weighted clustering coefficient were higher for
habitual vs loud reading (p < 0.009). The adjusted significance level was α′ = 0.05/3 = 0.0167. For weighted clustering coefficient, there is a
significant difference between reading at habitual and elevated loudness (p = 0.001). Effect size for degree (|rrb| = 0.08) and weighted clustering
coefficient (|rrb| = 0.1) is low.
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TABLE I
MEAN VALUES OF NETWORK (LEFT) AND SPECTOTEMPORAL (RIGHT) METRICS FOR EACH TASK

→ loudness = habitual loudness, ↑ loudness = elevated loudness, → pitch = habitual pitch, ↑ pitch = high pitch

Fig. 6. Comparison of tasks with highest network metrics from each
group: 1) Pitch glide has both the highest degree and weighted cluster-
ing coefficient (WCC), followed by 2) varied phonation task with elevated
loudness, high pitch, followed by 3) habitual reading, and all tasks are
different from one another (for both degree and weighted clustering
coefficient, all three taskwise comparisons: p < 0.001). The adjusted
significance level was α′ = 0.05/3 = 0.0167. Reading has ∼ 1/3 the
median degree and weighted clustering coefficient of the varied phona-
tion task and pitch glide.

(i) network degree and weighted clustering coefficient increase
monotonically with loudness and pitch in the varied phonation
tasks and (ii) network degree and weighted clustering coefficient
are both the highest for the pitch glide task. The ability of the in-
termuscular coherence network to distinguish vocal parameters
and tasks was far superior to the conventional node-wise metrics
for sEMG, such as RMS and PSD. These results suggest that both
the varied phonation and single repetition tasks in combination
with the perilaryngeal-cranial myographic network are sensitive
to various vocal features and thus can be potentially considered
as candidates for measuring the efficacy of therapy for vocal
disorders. The current study showed very strong statistics sup-
porting the use of the proposed network measures while the
conventional spectrotemporal metrics fail to provide the needed
sensitivity to the vocal features.

Perilaryngeal-cranial intermuscular coherence ascends
monotonically with loudness and pitch in the varied phonation
tasks (Figs. 2––5(a), Table I). The high differentiation of the
varied phonation and single repetition group tasks with high

to very high effect size (varied phonation: |rrb| ∼ 0.5, single
repetition: |rrb| ∼ 0.8) robustly supports the hypothesis that
perilaryngeal-cranial intermuscular coherence is generally
proportional to loudness and pitch. To the best of the authors’
knowledge, this is the first study that shows perilaryngeal-cranial
intermuscular coherence is conclusively correlated to loudness
and pitch.

In contrast to the coherence network, conventional node-wise
metrics such as RMS, PSD, and median frequency failed to
efficiently discriminate varied phonation tasks (Fig. 5(a)). Al-
though there were some differences between louder and ha-
bitual loudness tasks, the effect size (|rrb|) was much smaller
for these metrics than for coherence (RMS: 0.08, PSD: 0.07,
versus network degree: 0.48 and weighted clustering coeffi-
cient: 0.5), i.e., the average difference between the task pairs
was less pronounced compared to the median of the tasks.
Despite inconclusive shifts in low cervical muscle activations
(Table I, Fig. 7), significant relative changes from task to task
were captured by network metrics (Fig. 5(a), (b)). The superior
performance of coherence over node-wise metrics may arise
from the fact that network analysis allows us to conduct a holistic
neurophysiological analysis of the functional synchrony and
synergistic co-modulation of the muscles needed for successful
conduction of the tasks. Thus, in the context of voice, the
authors believe that the synchronous behavior of the muscles
has higher discriminative power (for separating vocal features)
and potentially higher diagnostic value than isolated individual
muscle recordings.

Overall, the single repetition tasks provided the most dif-
ferentiable network degree and weighted clustering coefficient,
which both decrease monotonically from pitch glide to singing to
speech with very high effect size (degree: |rrb| = 0.83, weighted
clustering coefficient: |rrb| = 0.85) (Fig. 5). The effect is even
greater for the single repetition than varied phonation tasks.
Moreover, it should be highlighted that all subjects followed
the group trend for network global efficiency of the single
repetition tasks, emphasizing robust separability. This suggests
that vocal tasks of different nature (pitch glide, singing, and
speech) provide the greatest diversity and objectivity of muscle
network performance which can be easily differentiated by the
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Fig. 7. RMS, PSD and median frequency of the three groups of
tasks. Quantifying the muscle activity with RMS, median PSD, and
median frequency produces 12 node values for each metric. All node
values for all subjects are included in each distribution (12 nodes × 8
subjects = 96 data points). (a) For varied phonation tasks, median
PSD shows increases in response to raised loudness. Louder tasks
have higher median PSD (p < 0.008) than habitual loudness tasks. RMS
increases with elevated loudness for the high pitch task (p < 0.002). The
adjusted significance level was α′ = 0.05/6 = 0.0833. However, overall
effect size of varied phonation tasks is still low (RMS: |rrb| = 0.08,
PSD: |rrb| = 0.07). No consistent patterns were observed for median
frequency. (b) For single repetition tasks, pitch glide had a significantly
higher median frequency than the two other tasks (p < 0.001). The
adjusted significance level was α′ = 0.05/3 = 0.0167. No substantial
trends were observed for RMS or PSD. (c) For reading tasks, RMS and
median PSD show increases in response to elevated reading loudness.
The adjusted significance level was α′ = 0.05/3 = 0.0167. However, the
effect size is weak (RMS and PSD: |rrb| = 0.12).

network metrics. The fact that pitch glide has the highest degree
and weighted clustering coefficient among all tasks (Fig. 6)
suggests that the smooth transition of the voice through octaves
is assisted by very synchronous perilaryngeal-cranial muscle
activity. Indeed, it is notable that singing had higher network
coherence than regular speech. Using the results that (i) higher
pitch led to increased network coherence for /a/ tasks and (ii)

pitch glide has the maximum network coherence of all tasks, both
the higher average pitch and the larger number of pitch changes
for singing versus speech are consistent with singing having
higher network coherence. This result is in contrast to a previous
result with beta-band coherence between two muscles [23],
which found that speech had higher beta-band coherence than
singing. This difference might be due to benefiting from an
intermuscular coherence network with 12 nodes and 66 edges in
this study versus only two nodes and one edge coherence in the
previous study. This work also considers a much wider frequency
range (20–100 Hz) than the previous beta-band coherence [23].
Despite the higher expected pitch for singing vs. speech, neither
median frequency nor PSD succeeded in detecting a difference,
highlighting the superiority of muscle network coherence over
node-wise methods in responding to quantifiably small physio-
logical changes of external muscles related to vocal output.

Tasks with a higher pitch component produced a more syn-
chronous network, and varying the pitch led to clearer network
responses. Both the varied phonation (/a/) high pitch and pitch
glide tasks were shown to have at least 3 × the network degree
or weighted clustering coefficient of a reading task (Fig. 6),
highlighting the ability of tasks with a high pitch component
to produce the most pronounced network output. Moreover,
the pitch-varying task sets showed clear responses to vocal
parameter changes. The varied phonation tasks showed a grad-
ually increasing response (Fig. 5(a)) from a median network
degree∼ 0.25 for habitual loudness, habitual pitch to∼ 0.55 for
elevated loudness, high pitch. The single repetition tasks showed
a sharper decrease from pitch glide to singing than from singing
to speech. For both varied phonation and single repetition tasks,
the network metrics showed a distinctive response to each
task; the effect size was large (weighted clustering coefficient:
|rrb| > 0.5) and the null hypothesis was rejected with the highest
significance level (p < 0.001) for all task-wise comparisons.
Tasks that produce the most responsive network behavior would
be the most appropriate candidates in vocal therapy assessment,
as the responsiveness of the perilaryngeal-cranial intermuscular
coherence network should be high to maximize the sensitivity
of detecting signs of dysphonia or improvements made by the
therapy. Since the muscle network was most responsive to tasks
with a higher pitch component and pitch-varying task sets,
such tasks promise the best chance of success when monitoring
patient progress during vocal therapy.

Our results demonstrate the efficacy and sensitivity of the
intermuscular coherence network analysis in reflecting quan-
tifiably small modulations in vocal output (Table I), such as
detecting changes in vocal parameters and discriminating single
repetition tasks, with a robustly high effect size.

Taking inspiration from brain connectivity networks that can
detect functional changes, this is the first work that shows topo-
graphical features of the intermuscular coherence network can
detect changes to indicate functional vocal characteristics. Since
vocal impairments and aging also create significant changes in
vocal parameters [30], [31], the outcomes of this research can be
potentially translated into characterizing vocal disorders. This
will be investigated in our future work. Our study showed that
the high functional synchronicity of the perilaryngeal-cranial
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muscles produced a strong network response during pitch glide,
suggesting that the laryngeal performance can be measured by
the perilaryngeal-cranial network, which needs to function in
synchrony to conduct the corresponding tasks. With such a high
sensitivity, other vocal disorders could be potentially detected
and monitored by our suggested configuration. Given the high
range of muscles recorded, in addition to the wide frequency
range covered, the perilaryngeal-cranial muscle network is a
great candidate for an objective, digital method of detecting
and monitoring a wide range of vocal disorders, using smart
wearable clinical technologies, such as a smart EMG necklace.
A further clinical application of the strong correlation between
perilaryngeal-cranial muscle network features and vocal output
lies in an EMG-based electrolarynx device [32], [33]. Regarding
patients who have lost their vocal cords due to cancer, the muscle
network features of healthy cervical muscle activity could be
used to drive a laryngeal prosthesis, capable of distinct levels of
output pitch and loudness.

Some limitations of this study include that the effect of vocal
fatigue was not controlled and the order of the tasks was not
randomized. It should be noted that the vocal experiment pro-
cedure for each subject required a total of ∼ 9 minutes of vocal
effort, which is significantly lower than the effort needed for
fatiguing a subject (which is∼ 60minutes for vocal fatigue with
comfortable reading loudness or intermittent loud reading tasks
for several hours [34], [35]). Even though the duration of each
task was very limited in this study and would not trigger vocal
fatigue or any major change in the neurophysiological status of
the muscles, this study does not randomize the tasks to maximize
protocol adherence, in terms of production of the targeted vocal
tasks. The authors would like to highlight that this study was
limited in terms of inclusion of older adults and patients with
voice disabilities and degradation. These topics will form our
future work. It should be noted that cross-talk can always affect
sEMG recordings with densely-placed electrodes, including the
one used in this paper. However, the robust effect size of the
features of the intermuscular coherence network reported in this
paper, the use of Delsys Mini sensors, and bipolar sEMG suggest
that cross-talk has had minimum-to-no effects on the main aim
of this study. The resiliency of the network to potential cross-talk
can be specifically investigated in our future work.

V. CONCLUSION

For the first time, this work shows that the perilaryngeal-
cranial functional muscle network can detect subtle changes in
distinguishing vocal tasks. The network-based metrics showed
a robust effect size for changes in loudness and pitch in the
set of varied phonation tasks and an even more robust effect
size amongst the single repetition tasks, which included a pitch
glide, singing, and a short speech. The network outperformed
conventional spectrotemporal node-wise metrics (RMS, PSD,
and median frequency) regarding sensitivity to changes in vocal
output. This robustness suggests that the perilaryngeal-cranial
functional muscle network is a promising method to differentiate
physiological abnormalities and may be used in the future to
assess voice disorders and optimize vocal rehabilitation. The

future direction of this study includes data collection from a
more diverse control population and inclusion of the patient pop-
ulation to (a) enhance the robustness of the made observations
and (b) evaluate the power of the proposed method as a potential
diagnostic biomarker.
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