
© 2025 The Authors. Published under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license.

Imaging Neuroscience, Volume 3, 2025
https://doi.org/10.1162/IMAG.a.136

Software Toolbox

The lab streaming layer for synchronized multimodal recording
Christian Kothea, Seyed Yahya Shirazib, Tristan Stennerc, David Medined, Chadwick Boulaye, Matthew I. Grivichf,
Fiorenzo Artonig,h, Tim Mullena, Arnaud Delormeb, Scott Makeigb

aIntheon Labs, San Diego, CA, United States
bSwartz Center for Computational Neuroscience, University of California San Diego, La Jolla, CA, United States
cInstitute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
dDiademics Pty Ltd, Melbourne, Australia
eOttawa Hospital Research Institute, Ottawa, Canada
fNeurobehavioral Systems, Berkeley, CA, United States
gDepartment of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
hDepartment of Clinical Neurosciences, Université de Genève, Geneva, Switzerland

Corresponding Author: Seyed Yahya Shirazi (shirazi@ieee.org)

ABSTRACT

Accurately recording the interactions of humans or other organisms with their environment and other agents
requires synchronized data access via multiple instruments, often running independently using different clocks.
Active, hardware-mediated solutions are often infeasible or prohibitively costly to build and run across arbitrary
collections of input systems. The Lab Streaming Layer (LSL) framework offers a software-based approach to syn-
chronizing data streams based on per-sample time stamps and time synchronization across a common local area
network (LAN). Built from the ground up for neurophysiological applications and designed for reliability, LSL offers
zero-configuration functionality and accounts for network delays and jitters, making connection recovery, offset
correction, and jitter compensation possible. These features can ensure continuous, millisecond-precise data
recording, even in the face of interruptions. In this paper, we present an overview of LSL architecture, core features,
and performance in common experimental contexts. We also highlight practical considerations and known pitfalls
when using LSL, including the need to take into account input device throughput delays that LSL cannot itself
measure or correct. The LSL ecosystem has grown to support over 150 data acquisition device classes and to
establish interoperability between client software written in several programming languages, including C/C++,
Python, MATLAB, Java, C#, JavaScript, Rust, and Julia. The resilience and versatility of LSL have made it a major
data synchronization platform for multimodal human neurobehavioral recording, now supported by a wide range of
software packages, including major stimulus presentation tools, real-time analysis environments, and brain-
computer interface applications. Beyond basic science, research, and development, LSL has been used as a resil-
ient and transparent back-end in deployment scenarios, including interactive art installations, stage performances,
and commercial products. In neurobehavioral studies and other neuroscience applications, LSL facilitates the
complex task of capturing organismal dynamics and environmental changes occurring within and across multiple
data streams on a common timeline.

Keywords: brain/behavior quantification and synchronization (BBQS), multimodal recording, mobile brain/body
recording (MoBI), real-time synchronization

Received: 13 September 2024  Revision: 1 July 2025  Accepted: 11 August 2025  Available Online: 18 August 2025

https://doi.org/10.1162/IMAG.a.136
https://crossmark.crossref.org/dialog/?doi=10.1162/IMAG.a.136&domain=pdf&date_stamp=2025-09-11
mailto:shirazi@ieee.org

2

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

1.  INTRODUCTION

Recording and modeling brain dynamics supporting
active, natural cognition involving eye movements, motor,
and other behavior is becoming an integral part of neuro-
biological research and requires multimodal recording of
an organism’s neural processes and interactions along
with concomitant changes in its environment. Successful
multimodal recording demands adequate temporal reso-
lution and precise synchronization of concurrently
recorded data streams. In human neuroscience, mobile
brain/body imaging (MoBI) (Makeig et al., 2009) is a mul-
timodal recording concept involving synchronized
recording of brain, behavioral, and environmental data
streams with near millisecond (ms) resolution. Maintain-
ing synchronization at this scale between brain (electro/
magnetoencephalography (EEG/MEG); functional near-
infrared spectroscopy (fNIRS), etc.), behavioral (body
motion capture and eye movement tracking), physiologi-
cal (electromyography, EMG, etc.), and environmental
data streams (video, treadmill, balance plate, robots, or
other agent positions and forces, sensory stimulation,
etc.) often requires multiple computer systems with
no hardwired common clock to relate the timing of their
outputs.

Here, we describe the Lab Streaming Layer (LSL), a
software framework that is helping researchers across
academic and industrial settings meet the challenge of
multimodal recording through its ability to collect and
synchronize data streaming from multiple devices and
platforms connecting asynchronously to a local area net-
work (LAN) with broad hardware and software compati-
bility. LSL is a freely available open-source project under
the umbrella of a dedicated GitHub organization https://
github​.com​/labstreaminglayer, plus individual core repos-
itories available from the Swartz Center for Computa-
tional Neuroscience (SCCN) (meta-package and core
library). A listing of over 150 known LSL-compatible
device classes is compiled at https://labstreaminglayer​
.org, which also serves as a landing page to tooling, doc-
umentation, and other resources. LSL is supported by an
active international community of contributors (including
several coauthors). Currently, two annual workshops in
Europe and the U.S. bring together platform users, con-
tributors, and developers, and present learning opportu-
nities for newcomers. Organizers currently include the
SCCN and teams at the University of Oldenburg and TU
Berlin. The popularity of LSL cannot be explained by any
one of its features. Rather, its focus on ease of use and
robustness, and its distributed model that allows syn-
chronization of a wide mix of applications from multiple
vendors and open-source projects running on multiple
computers (desktop or mobile) contribute to its appeal,

as does its broad platform compatibility with most major
programming languages and all major desktop and
mobile operating systems. The large LSL ecosystem and
installed base also contributes to its growing adoption
and appeal.

One of LSL’s technical features is the synchronization
of distributed neuroscientific data streams based on a
peer-to-peer protocol modeled after the Network Time
Protocol (NTP) as specified in RFC 5905 (Martin et al.,
2010). A closely related component is LSL’s decomposi-
tion of timing error into three components: a constant, a
slow-varying, and a noise component, which are each
addressed separately. Using these two approaches, LSL
can ensure that timestamps associated with every data
sample, collected across multiple acquisition devices
and computers, are accurately compensated for intrinsic
device delay, clock drift, and jitter in the presence of vari-
able network transmission latency. This capability is cru-
cial in neuroscience research where near-msec precision
can be essential for accurate data analysis and interpre-
tation, particularly in studies involving complex brain/
body dynamics, high-intensity biomechanics, and multi-
subject interactions.

Challenges in collecting proper multimodal recordings
include 1) the need to synchronize data streams from dif-
ferent platforms, 2) including data streams with heteroge-
neous sampling frequencies, 3) set up and staff training
of multiple recording workstations and (possibly propri-
etary) software, 4) interfacing with multiple proprietary
data access APIs with limited OS and programming lan-
guage support, documentation, and learning resources,
and 5) meeting challenges in data conversion, integra-
tion, storage, sharing, and reproducibility. Several hard-
ware synchronization tools have been developed to
address the pre-sampling synchronization in multimodal
recordings. These include intricate systems of TTL
(transistor-transistor logic) pulses, equipment for mea-
suring throughput delays of recording instruments, and
dedicating one instrument recording channel as a syn-
chronizing clock (Artoni et al., 2017; Bannach et al., 2009;
Maidhof et al., 2014).

Recent advances in hardware-managed synchroniza-
tion can improve common clock accuracy for digitally
triggered events to tens of microseconds, including solu-
tions based on shared clocks and analog-to-digital (A/D)
converters and (Chuang et al., 2021) radio-frequency
trigger modules (Cerone et al., 2022). However, the use of
hardware data synchronization approaches is very often
not feasible in laboratories without resources to engineer
special-purpose solutions across the range of proprietary
acquisition systems researchers wish to use in their
experiments. This is still more the case for low-cost and/
or consumer-grade microelectronics-based systems that

https://github.com/labstreaminglayer
https://github.com/labstreaminglayer
https://labstreaminglayer.org
https://labstreaminglayer.org

3

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

can now be used to record multimodal data inexpen-
sively in paradigms, allowing, among others, greater
degrees of participant mobility or at-home use.

Heterogeneous sampling frequency, platform inaccu-
racies, jitter, and sampling fluctuations make synchroni-
zation of the data stream using ‘start/stop’ events
insufficient for neuroscience purposes. Such a setup
may cause synchronization to drift by many millisec-
onds within mere minutes of data collection, which typ-
ically grows longer over longer recording durations. A
recent study of multimodal MoBI data collection meth-
ods concluded that frequent TTL pulses are needed to
retain millisecond synchronization between data
streams (Artoni et al., 2017). Without this or some other
hardware or software organizing method, data streams
with different sampling frequencies typically drift out of
synchronization over time, compromising their worth for
joint analysis.

The setup and maintenance of professional timing
equipment across multiple workstations running mutually
incompatible recording software is time-consuming and
may require a dedicated recording technician and/or
experimenter team to run, monitor, and document the
data collected by each system. A dedicated staff training
process is often required to learn to operate the acquisi-
tion software associated with each system.

Finally, owing to the proprietary nature and variety of
data collection software and data access means for dif-
ferent systems and the need to record metadata stored in
different forms and locations, performing data conver-
sion and preprocessing, integration, annotation, storage,
analysis, and sharing is challenging. All these factors limit
access to high-quality research capabilities.

1.1.  The broader landscape in multimodal recording

The LSL project was started in 2012 in response to an
emergent need for robust multi-modal data acquisition at
the Swartz Center for Computational Neuroscience
(SCCN), UCSD, by the first author (Christian Kothe), where
also the multimodal Mobile Brain/Body Imaging (MoBI)
concept was originally proposed and first demonstrated
(Makeig et al., 2009). The available software at the time for
this purpose was a partly proprietary package that was
then in use at SCCN. Another technology predating LSL is
the Tobi Interface A (Breitwieser & Eibel, 2011), which
mainly aimed to standardize the representation of biosig-
nals. HLA Evolved (Möller et al., 2008) was another solu-
tion for robust distributed simulator event tracking, which
influenced our attention to reliability. There was no real-
time data access protocol natively supported by multiple
vendors of EEG hardware, let alone of a broader spectrum
of neurobehavioral modalities.

Shortly after availability, LSL grew rapidly in popularity
and found enthusiastic supporters both among academic
labs and hardware manufacturers. As of mid-2025, LSL
has been mentioned more than 2300 times in scientific
articles, and is supported by the majority of popular real-
time processing platforms for brain- and bio-signals,
including BCI2000 (Schalk et al., 2004), OpenViBE
(Renard et al., 2010), NeuroPype (Intheon, La Jolla, CA),
Open Ephys1, BCILAB (C. A. Kothe & Makeig, 2013), and
MNE-Python (Gramfort et al., 2013), and younger plat-
forms such as Timeflux (Clisson et al., 2019), MEDUSA
(Santamaría-Vázquez et al., 2023), and Dareplane (Dold
et al., 2023). Since most high-level processing frame-
works have a modular data source concept, most other
brain-/bio-signal processing platforms can be made LSL
compatible with relatively little effort and can thereby be
made to leverage the full breadth of LSL-supported hard-
ware. LSL has also been chosen as an underlying trans-
mission protocol by commercial multi-vendor system
integrators, including iMotions2 and BrainProducts3.

Since LSL is simultaneously a publish/subscribe over-
lay network and API, a time-synchronization solution, a
multi-modal time-series and meta-data recording solution,
and a real-time streaming tool with native support for event
data, there are to our knowledge not many directly compa-
rable alternatives. When reduced to its network protocol
aspect, some alternatives are ZeroMQ4, MQTT5, plain
TCP/IP, and Redis6 (e.g., as used in BRAND (Ali et al.,
2023)). In the audio control domain, an established proto-
col is Open Sound Control (OSC). Besides Open Epyhs,
another project supporting multiple types of electrophysi-
ology hardware is BrainFlow7, which currently supports a
range of low-cost and DIY devices. For instrument and
lighting control, respectively, well-known examples with
good timing support are MIDI and DMX, but these do not
leverage existing Ethernet or Wifi networking. However, it
should be noted that even these solutions can, and some
have been, integrated with LSL via bridge adapters. Alter-
natives for time synchronization are the precision time pro-
tocol (PTP) (IEEE SA Standards Board, 2020), which
requires dedicated hardware, and manual NTP-based syn-
chronization. Without a doubt, numerous research labs
have developed countless pieces of in-house software
that acquires data from two or more devices, some of
which are also open-source projects (e.g., Bonsai (Lopes
et al., 2015) with its focus on video and electrophysiology

1  https://open​-ephys​.org
2  https://imotions​.com​/products​/imotions​-lab​/developers​/lsl​-support/
3  https://pressrelease​.brainproducts​.com​/lsl​-viewer/
4  https://zeromq​.org
5  https://mqtt​.org
6  https://redis​.io
7  https://brainflow​.org

https://open-ephys.org
https://imotions.com/products/imotions-lab/developers/lsl-support/
https://pressrelease.brainproducts.com/lsl-viewer/
https://zeromq.org
https://mqtt.org
https://redis.io
https://brainflow.org

4

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

analysis of behaving rodents mainly on Windows worksta-
tions), but to our knowledge, none currently enjoy a degree
of popularity, broad plug-and-play device compatibility,
and large installed-base as LSL.

1.2.  LSL limitations

Despite the stringent LSL time synchronization guardrails
described below, LSL performance has some limitations.
Most importantly, LSL does not have access to any
incoming data until the moment it is received by the
microprocessor (CPU) or microcontroller unit (MCU) on
which the LSL software communicating with the device
is running. Thus, LSL cannot itself learn or estimate
whatever on-device delays within each recording device
occurred (the intervals accruing between data signal
input and its arrival in the software). Measuring on-device
delay (and ideally histogram) at least once for each acqui-
sition stream is, therefore, necessary to allow LSL to con-
vert the recorded times of data arrival into times of data
capture. Once known, the delays, which LSL models as
constant in between setup changes, can be accounted
for and declared in software. This limitation is inherent to
multimodal neuroscience data acquisition systems engi-
neered without common hardware clock availability.

1.3.  LSL advantages

The LSL approach to synchronized aggregation of con-
current data streams has three main advantages that
together significantly enhance the data acquisition pro-
cess: 1) Facilitating multi-modal data collection with het-
erogeneous and/or irregular sampling rates, 2) enabling
distributed measurement and data processing across
multiple systems, and 3) streamlining both real-time and
offline access to time-stamped multimodal data through
its companion XDF file format.

The LSL unified Application Programming Interface
(API) and protocol standardize data exchange across any
number of measurement modalities, creating a consis-
tent real-time data stream access interface. This simpli-
fies initial device setup, allowing LSL-compatible clients
to require minimal or often no modifications to function
with devices from different vendors. The API also offers
the flexibility to use several of the most popular program-
ming languages, allowing it to be integrated into almost
any piece of existing software with little effort.

LSL allows time-synchronized stream readouts from
all networked devices, simplifying the experimental pro-
cess to merely starting the included recording devices
and melding the received streams into an integrated XDF
data record using the LSL LabRecorder application (or
any equivalent of choice), eliminating the need to manage

multiple data file formats and increasing the efficiency of
either near-real time or post hoc data analysis. Moreover,
LSL network protocol standardization facilitates the dis-
tribution of data measurement and processing across
multiple computers without explicit network parameter
configuration, increasing data acquisition versatility.

2.  SYSTEM OVERVIEW

LSL is a local network that runs on top of (or overlays) an
Internet Protocol (IP) network running at the experiment
site. LSL network peers can publish and subscribe to
any number of streams of single- or multi-channel time-
series data (Fig. 1). LSL regularly quantifies clock offsets
(OFS) and round-trip time (RTT) between peers to enable
data stream synchronization. Multi-channel samples of
any stream published on LSL contain the channel val-
ues (of flexible type) and a time stamp assigned by LSL
or the LSL integration (“LSL App”) for the device. Peer
access to LSL is set up using a dynamic library (liblsl)
available for most POSIX-compatible platforms (IEEE
SA Standards Board, 2018), including Windows, Linux,
MacOS, Android, and iOS. The LSL API has been
designed to “hide” the complexities of time synchroni-
zation and real-time network programming from both
researchers and device manufacturers, while ensuring
maximum network resiliency against dropped connec-
tions and data losses.

2.1.  LSL objectives

Chief goals governing LSL construction were: a) to simplify
the discovery and selection of the published streams, b) to
simplify publishing of active data streams to subscriber
applications in near real-time, c) to supply sufficient meta-
data to allow for full interpretation of the transmitted time
series, d) to solve the time-synchronization problem for
concurrent data streams with an error low enough for most
neurobehavioral research (i.e., at most msec-scale), e) to
provide adequate out-of-the-box fault tolerance across a
range of commonly-encountered failure scenarios (such
as single-device failures, reconnects, restarts, intermittent
network connectivity loss, and so forth), f) to establish a
unified multimodal data representation, and g) to offer an
API to access, transmit, and (when needed) store data
from any set of data streams, regardless of modality.

Other possible objectives were explicitly not LSL design
goals: a) building an online or post hoc data processing
system (although such systems can easily be built on top
of LSL), b) building an internet-scale and/or internet-facing
data transport system, c) replacing or competing with
existing data acquisition software (e.g., device drivers or
applications), d) replacing or competing with non-signal

5

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

intra-process or inter-process message queuing systems,
or e) solving needs far outside physiological or neurobe-
havioral research (e.g., high-energy physics).

2.2.  LSL design

The LSL software framework consists of three main com-
ponents: the LSL API and language wrappers, the LSL
core library (liblsl), and the LSL protocols (see Fig. 2).

The LSL API is a unified interface to communicate
with the LSL core library from external instruments and
devices. To maximize compatibility and ensure a stable
Application Binary Interface (ABI), LSL presents a C API
in agreement with shared-library best practices (Drepper,
2011), although the core is implemented in C++. Thanks
to this stable ABI, support for other programming lan-
guages can be implemented with the C Foreign Function
Interface (FFI), which enabled the creation of a wide
range of wrappers for languages such as Java, C#,
Python, Matlab, Rust, and several others. A header-only
C++ API is also natively provided by the core library.
These API wrappers provide the same metaphors, termi-

nology, and functionality that the core C/C++ API pro-
vides. Since its initial release, liblsl has remained within
the 1.x series, and all versions in this range are designed
to be interoperable; connection handshakes negotiate
the highest mutually supported protocol version to ensure
compatibility. The library follows semantic versioning
standards for API compatibility within major releases,
while protocol versioning is handled separately; currently
supporting two protocol versions that enable communi-
cation between different liblsl versions, including poten-
tially decade-old software installations that remain critical
in research environments.

Each existing API attempts to respect the idioms and
standards of the language in which they are implemented.
So, the Python API aims to be “Pythonic,” while the C API
is an example of a “classical” C style, yet at the same
time, all APIs cover an equivalent feature set. Developers
can use the API to design executable programs to com-
municate with their peers on the network, publish data,
and subscribe to streams from other peers.

A simple yet runnable example in Python that discov-
ers, subscribes to, and then reads from an EEG stream

Fig. 1.  System overview. The Lab Streaming Layer (LSL) creates a network connecting data acquisition, storage,
and processing devices overlaying the local network (LAN) on which they are streamed. LSL handles publishing and
subscribing to data streams, clock synchronization, accounting for network delays, and jitter using the LSL dynamic library
(liblsl). LSL outlets publish data streams to the network that LSL inlets can subscribe to. LabRecorder is a space-efficient
and high-throughput LSL recording program that can supervise recording of streams from any number of LSL outlets.
Clients on the network include device integrations (seen on the left-hand-side), single- or multi-stream visualization or real-
time processing components, and arbitrary stimulus presentation and response collection mechanisms.

6

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

on the LSL network is given in the following listing (equiv-
alent examples are provided for all supported program-
ming languages):

from pylsl import StreamInlet, resolve_
stream

streams = resolve_stream(’type’, ’EEG’)
inlet = StreamInlet(streams[0])

while True:
   sample, timestamp = inlet.pull_sample()
   print (timestamp, sample)

A corresponding simple example that generates 8
channels of random floating-point numbers and streams
them to LSL at approximately 200 Hz, here written in
C++, is shown below. For best interoperability it is recom-
mended to additionally specify meta-data such as chan-
nel labels, which is not shown here. Equivalent
functionality is available for all other supported program-
ming languages.

#include <chrono>
#include <lsl_cpp.h>
#include <thread>

const int nchannels = 8;

int main(int argc, char *argv[]) {
  lsl::stream_info info(“MyStream”, “EEG”,

nchannels, 200.0);
  lsl::stream_outlet outlet(info);

  float sample[nchannels];
  while (1) {

    for (int c = 0; c<nchannels; c++)
       sample[c] = ((rand() % 1000) /

1000.0);
    outlet.push_sample(sample);
    std::this_thread::sleep_for(

       std::chrono::milliseconds(5));
  }
  return 0;

}

The LSL core library (liblsl) is written in modern C++
and manages features that LSL offers. Each peer needs
to have a copy of the liblsl to communicate with other
peers on the network. Our effort has been to maintain
liblsl as a self-contained package to minimize its depen-
dencies on packages that are not shipped with the LSL
source code. Therefore, users should be able to compile
the library in case compiled binaries are not available on
a given platform.

Internally, liblsl uses pugixml (Kapoulkine, n.d.) for
XML and XPath processing, loguru (Delgan, n.d.) for log-
ging with configurable verbosity and log targets, and
Boost ASIO (Kohlhoff, n.d.; Koranne, 2011) for portable
high-performance asynchronous networking.

LSL Network Protocols. LSL internally implements
five network protocols to allow peers to create and main-
tain outlets to publish data streams, inlets to subscribe to
streams, and to stream information objects each carrying
all the requisite metadata for a data stream. By protocols,
we mean the steps and standards to establish outlets,
inlets, and metadata transfers. The five protocols are
titled (1) Discovery, (2) Subscription, (3) Stream transmis-
sion, (4) Metadata transmission, and (5) Time synchroni-
zation. Adherence to the protocols is guaranteed by the
core library (liblsl).

2.2.1.  The discovery protocol

The first stage in establishing communication between
inlets and outlets is stream discovery. An application may
discover outlet peers by broadcasting query messages

Fig. 2.  Lab Streaming Layer Design. LSL consists of
three main components: 1) LSL language wrappers and
API, 2) LSL core library (liblsl), and 3) LSL protocols. The
LSL API is a unified interface enabling communication
with the LSL core library from external instruments and
devices. The API was originally composed in C/C++
and is wrapped in other languages. The LSL core library
(liblsl) is written in C++ and implements all features that
LSL offers. The LSL protocols are the set of steps and
standards required to establish reliable communication
and synchronization between peers.

7

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

into the network via UDP broadcast and UDP multicast
(RFC1112) (Deering, 1989) to user-configurable multicast
groups and awaiting responses. The query message con-
tains an XPath 1.08 compliant query string that specifies
some metadata properties of the stream of interest (e.g.,
type=”EEG”). The host of each published stream on the
network will then respond to matching queries with a
small response packet that contains the essential proper-
ties necessary for establishing a connection specific to
the querying peer so that a single machine can stream
data to multiple peers at once. These include the name,
type, and unique identifier of the stream and are format-
ted as an XML string. Responses to identical queries are
cached for efficiency.

For convenience, all of this happens ‘under the hood’
of a single LSL function call. The programmer of an LSL
application need not be concerned with the details of
interfacing with a network stack for this to work. Further-
more, queries can be transported over several network
protocols, including UDP broadcast and multicast of var-
ious scopes, and can be done using IPv4 and/or IPv6.
LSL will correctly choose the right communication tech-
nique so that the programmer can be agnostic of the
underlying network protocols.

The same LSL query protocol is used to automatically
reconnect to a peer should the connection be lost during
a data transfer; for example, if a software or network
computer crashes, or a change in network topology
occurs. Connection recovery will be successful even if
the peer’s IP address has changed. This provides sub-
stantially greater resilience than most protocols that can-
not recover from a change in IP addresses.

2.2.2.  The subscription protocol

After a desired active outlet object is discovered, the host
application on the subscriber side will want to connect a
stream inlet to the outlet. This process is called an LSL
subscription, enacted by establishing a TCP connection
to a network endpoint advertised in response to the dis-
covery query. A brief two-way protocol negotiation hand-
shake establishes this connection. The handshake
resembles HTTP/1.1 GET and its response (Fielding
et al., n.d.). The purpose of this handshake is to exchange
several transmission parameters such as the protocol
version, byte order, buffer sizes, support for floating-point
subnormals, etc.

A mutually agreed-upon sequence of test-pattern data
is also transmitted to confirm that both parties can sup-
port the same protocol. The metadata header (stream

information object) is also transferred from the host (out-
let) to the client (inlet) to confirm that the endpoint does
carry the requested data stream. Once this exchange is
completed, the connection is formed, and time-series
data will flow from the outlet to the inlet until the connec-
tion is terminated.

2.2.3.  The stream transmission protocol

LSL transmits time-series data as a byte stream split into
packets by the underlying network layer. Samples in the
time series may be marked for immediate transmission to
enable use in real-time applications. This effectively indi-
cates a ‘flush’ operation wherein the marked sample(s) are
to be transmitted as soon as the underlying network per-
mits. The byte stream is a sequence of encoded message
frames. Every frame corresponds to one sample and
includes a losslessly delta-compressed timestamp fol-
lowed by the sequence of data values (bytes) encoded
according to the format agreed upon during the connec-
tion handshake. While the underlying protocol is sample-
oriented, the choice between immediate or deferred
transmission allows users to send or receive time series
either sample-by-sample or at the granularity of multi-
sample chunks, where either side can choose to use either
protocol, using easy-to-use high-level functions (the above
code listing shows sample-wise sending and receiving).

2.2.4.  The metadata transmission protocol

In addition to time-series data, a stream’s metadata must
be transferred from peer to peer. This metadata plays the
same role as a file header in a time-series recording and
contains information such as the stream name, type,
channel count, sampling rate, etc. The metadata needs
only be transmitted once and is, thus, treated by LSL as
‘out-of-band’ data. It is only transmitted on client request
over a TCP connection. A simple connection handshake
also precedes this transfer.

The metadata is plaintext and structured in accor-
dance with an attribute-free subset of XML and can be of
any length. LSL does not prescribe the metadata struc-
ture, but for interoperability, it is strongly recommended
to adhere to a specification of content types (modalities
such as EEG, Audio, Gaze, and so forth) and content
type-specific nomenclature of XML fields. The type-
specific nomenclature was co-developed with the XDF
(extensible data format) project and is available online
from the XDF GitHub Wiki. Since this metadata specifica-
tion is plaintext XML, applications may extend and aug-
ment this metadata in any way that is suitable for a given
data stream without breaking compatibility or deviating
when necessary.8  https://www​.w3​.org​/TR​/1999​/REC​-xpath​-19991116/

https://www.w3.org/TR/1999/REC-xpath-19991116/

8

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

2.2.5.  Time synchronization protocol

A common use case of LSL is streaming multimodal time
series data from multiple peers to a separate peer that
subscribes to (monitors and/or records) the multimodal
data. LSL’s timestamping function returns the time of the
most steady (i.e., monotonically increasing) high-precision
computer clock available that has a minimum resolution of
1 msec or better (typically the machine uptime). The time
offset between multiple computers’ clocks, as well as their
relative drift, is continually measured and accounted for by
LSL when synchronization information is utilized. When an
inlet peer wishes to synchronize its clock with the respec-
tive outlet peer, a structured packet exchange is initiated
following the basic NTP model. Since clocks need to be
periodically re-synchronized due to the drift, this process
will be repeated regularly (e.g., by default, every 5 s). LSL
employs the clock filter algorithm of the Network Time
Protocol (NTP) (Martin et al., 2010) to account for random
spikes in network transmission delay. This process uses
multiple packet exchanges to estimate the clock offset
(OFS) and round-trip times (RTT) between peers in rapid
succession (e.g., ten times across 200 ms), yielding a set
of OFSs and RTTs from which the one with the lowest RTT
is retained.

Each packet exchange attempt for clock synchroniza-
tion consists of a packet sent from the initiating peer to
the receiver. This carries the local timestamp of the initi-
ating peer and is noted as t0. The receiver then responds
with two more timestamps, the receiving time of the orig-
inal packet t1, and the time of resend t2. Upon receipt of
this packet by the initiating peer, a final timestamp t3 is
taken. Then,

	 RTT = (t3 − t0) − (t2 − t1) 	 (1)

	 OFS = t1 − t0() + t2 − t3()() 2 	 (2)

Therefore, RTT is the duration of the entire round trip
minus the time spent on the receiving peer, and OFS is
the averaged clock offset between the peers with sym-
metric network transmission delays canceled out. This
measurement is a minimum-noise realization (because
we choose the OFS at the minimum RTT) of the unbiased
clock offset between the two peers. There can be a trans-
mission time asymmetry between the forward and back-
ward network path (e.g., due to driver implementation
details), but the residual error after clock filtering is upper-
bounded by the lowest delay of a machine’s network
implementation and is therefore assumed to be well
under 1 ms with most network hardware.

Using this time-varying measurement, the receiving
side of LSL then constructs a model of the observed time

stamps tobs as a function of the time tactual when the on-
device measurement actually occurred (ignoring relativis-
tic effects), an optionally smoothed estimate of the clock
offset OFS, a device-specific constant offset τ, and a
zero-mean noise term ε :

	 tobs = tactual + τ +OFS + ε 	 (3)

Using this formula, it is possible to recover tactual for
regularly sampled time series either using a recursive
least-squares estimator in real time or linear regression in
post-hoc data analysis, both of which are supported by
LSL for the former and by XDF implementations for the
latter.

2.3.  The extensible data format (XDF)

The Extensible Data Format (XDF) is an open-source and
general-purpose natively multi-modal container format
for multichannel time series data with extensive associ-
ated metadata. XDF is tailored towards biosignal data
such as ExG, GSR, and MEG, but it can also handle data
with a high sampling rate (like audio) or data with a high
number of channels (like fMRI or raw video). In general,
every data stream collected by the LabRecorder, along
with metadata and synchronization information is
recorded into a single XDF file. Crucially, XDF follows the
policy of recording all timing-related ground truth “as it
happened”, which allows for post-hoc analysis and
recovery of data in case of misbehaving devices or inter-
mittent failures during a recording. A result of this choice
is that, while XDF importers present a simple interface
similar to that of many other file importers, XDF files rep-
resent an exact record of what occurred during an exper-
iment, which can at times be complex, including a device
disappearing and later (e.g., after an unplanned battery
swap) reappearing.

In case of a high-bandwidth time series that may not
be transferable over the network (such as uncompressed
video), each frame of the stream may be timestamped
and stored in the local machine (outlet) while the time-
stamp information and the metadata would be sent over
LSL to the inlet machine and would be added to the XDF
files. Another scenario in which this may be favorable is
when video data falls under stricter privacy and regula-
tory requirements as personally identifiable information
(PII) than most other information that can be recorded
into an XDF file.

The XDF metadata is stored as XML content in an effi-
cient binary chunk-oriented container file format, and the
recognized metadata parameters are available at the XDF
GitHub repository. XDF predefines an extensible set of
content types (e.g., EEG, Audio, NIRS, and so forth) and

9

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

associated metadata specifications, following a light-
weight open process by which this specification is
extended. This allows a single file to maintain compre-
hensive yet extensible modality-specific metadata on par
with most unimodal biosignal file formats. XDF tools are
available for download via the XDF GitHub page. A
derived ANSI standard (ANSI/CTA-2060-2017) specifying
a file format for a consumer-grade variant of XDF has
since been published (ANSI, 2017).

2.4.  Failure resilience

Preventing data loss is a major objective during data col-
lection, especially in multimodal data acquisition where
the probability of hardware issues grows linearly with the
number of devices involved in a given data collection
setup. LSL is equipped with a number of mechanisms for
preventing catastrophic crashes and loss of data to
ensure smooth operation, even in the event of computer
crashes and lost network connections. To prevent data
loss, LSL outlet and inlet objects can use variable-size
buffers that have a configurable, arbitrarily large capacity.
So, in case an inlet temporarily could not receive data
from an outlet, the data can be buffered until the inlet can
handle the transfer. The upper limit of all of this is the
computer resources and network throughput.

In the event of an outlet dropping out, any inlets con-
nected to the outlet will attempt to reconnect. An event
will trigger within the inlet to periodically search for the
outlet and attempt to reconnect as soon as the outlet is
rediscovered. Since the outlet’s information object can
be created with a unique ID, this discovery will happen
automatically even if the outlet is recreated on a different
computer in the network and with a different IP address.

If an outlet drops out while an inlet is recording data,
LSL can tolerate a discontinuity in the clock offset for the
dropped stream after the rediscovery of the outlet, so
that the outlet timestamp is consistent with the time-
stamp information prior to the dropout. This behavior is
agnostic to the crash type and could resume recording of
the discovered outlet even if the disconnection is a result
of changing network topology, a computer crash and
restart, or hardware failure like a dead battery.

Since these recovery processes happen automatically,
the LSL user is shielded from having to cope with any-
thing other than potentially a gap in a recorded data
stream in the event that a device was intermittently not
recording data. XDF tools typically come with built-in
support for the detection and correct handling of such
data gaps. These collective built-in efforts to recover
connections between peers realize LSL’s failure resil-
ience. While our validation tests focus on ideal condi-
tions, LSL has been stress-tested under various failure

scenarios—including device restarts, network conges-
tion, and clock drift—to verify its resilience. Built-in
mechanisms such as automatic reconnection, time offset
renegotiation, and buffering help maintain data continuity
under typical disruptions.

2.5.  Software stack

LSL includes an ecosystem of applications to publish and
subscribe to data streams, APIs in various languages built
around the core dynamic library (liblsl), an extensible data
recording format, XDF, post-hoc analysis for loading LSL
synchronization performance, and tools for performing
offline time-synchronization. This ecosystem can be
accessed via the landing page and GitHub organization
and meta-repository. LSL also offers rich and open-source
documentation maintained by its developer community,
available at https://labstreaminglayer​.readthedocs​.io.

However, it is far beyond the scope of this article to do
justice to the greater LSL software ecosystem, which
includes over a hundred compatible client applications,
some open source and others vendor-native. Many appli-
cations in this greater ecosystem are hosted under an
umbrella GitHub organization, while many others are
vendor-provided data acquisition software with built-in
LSL support, and an unknown number of further LSL cli-
ents can be found via internet searches. While this article
focuses on acquisition devices, it is important to note
that the LSL ecosystem also includes a robust collection
of compatible stimulus presentation software, including
most major programs used for this purpose, which are
indispensable for scientific experimentation. Further-
more, the ecosystem includes software for real-time pro-
cessing of collected data (for example, for brain-computer
interface or neurofeedback applications), visualization,
troubleshooting, experiment management, and various
other tasks.

2.6.  Continued development and maintenance

Researchers and programmers from both academic and
commercial sectors all over the world have contributed to
the LSL source code and APIs. However, changes to the
core library (usually bug fixes) are made very infrequently
and with ultimate caution. Backward compatibility with
existing applications is maintained at all costs. The bug
rate is very low (less than one discovered every 6 months)
and, so far, all bugs that were discovered were non-critical.
Some bugs seen so far include a few memory leaks and
typing errors in printing metadata and error messages. We
have not found any bug affecting the proper operation of
sending and receiving data (the primary LSL objective) in
the past several years. Bugs in the LSL application eco-

https://labstreaminglayer.readthedocs.io

10

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

system and APIs are more common, but given the stability
and reliability of the core library and the simplicity of its
interface, these bugs are relatively trivial to identify and
cannot affect (i.e., crash) other LSL inlets and outlets—one
of the less obvious benefits of a decentralized design.

To maintain stability, unit tests covering a wide array of
both internal and API functions are run on all computing
platforms for every change committed to the source
code. In addition, the library is periodically stress-tested
with hundreds of streams, randomized disconnects,
shutdowns, reconnects, and randomized stream param-
eters. During such extreme network stress tests, some
consumer-grade network equipment has been found to
be less reliable (i.e., crashing) than the LSL implementa-
tion itself. Our dedicated benchmarks ensure that
changes in operating systems and libraries do not impair
the data exchange and synchronization performance. In
addition, downstream libraries, such as mne-lsl, also fol-
low continuous integration and unit testing best prac-
tices, providing additional implicit validation and stress
testing of the LSL ecosystem.

3.  TESTING AND RESULTS

LSL has been extensively tested and validated by the
biosignal research community in several studies (Blum
et al., 2021; Bustamante et al., 2021; Chuang et al., 2021;
Iwama et al., 2022; Kang & Wallraven, 2023; Levitt et al.,
2022; Merino-Monge et al., 2020; Weber et al., 2021).
Here, we provide some data concerning LSL’s perfor-
mance on a local network (i.e., all LSL inlets and outlets

running on a single machine), on a distributed network,
and on a local network collecting data from multiple
instruments. We provide a simple yet effective recipe to
determine, for a given data instrument, the total delay of
the data path for a given instrument, which is a sum of
the internal hardware delay (e.g., on-device buffers),
wireless transmission latency and operating system,
device driver, and driver access latency, which we term in
the following the “setup offset” τ.

Using a scientific-grade analog-to-digital/digital-to-
analog I/O device (National Instruments Data Acquisition
Box, NI-Daq, Austin, TX), we created a periodic pulse sig-
nal (Fig. 3). We used the same NI-Daq to receive the same
signal (DataIn), and create an DataIn marker when the
pulse was going high. To create the DataIn marker, we
chose the time the recorded signal reaches halfway to its
maximum amplitude. We also recorded the pulse event
directly from NI-DAQ using LSL.

At the same time, we used another scientific-grade
signal recording device (BioSemi Active-II, BioSemi B.V.,
Amsterdam, the Netherlands) and read the same pulse
signal as an LSL stream. We used a similar threshold for
the BioSemi-recorded pulse signal (i.e., halfway to maxi-
mum amplitude, BioSemi Marker), so that we could add
time markers when the pulse signal went high. We
recorded the BioSemi stream and the LSL marker stream
using LabRecorder, the native LSL recording program.

Finally, we compared the timestamps of the marker
stream and the ‘high’ points of the BioSemi stream. The
NI-Daq data input stream was sampled at 10 kHz, and
the BioSemi data stream was sampled at 2048 Hz.

Fig. 3.  Synchronization performance setup. The setup consists of a National Instruments Data Acquisition Box (NI-Daq)
that generates a periodic pulse signal (DataOut) and receives the same signal (DataIn). The same NI-Daq is used to
create an LSL marker when the pulse is going high. At the same time, a BioSemi Active-II receives the same pulse signal
as an LSL stream. The BioSemi stream and the marker stream are recorded using LabRecorder, the native LSL
recording program. The LSL marker stream is used to calculate the synchronization accuracy of the BioSemi stream.
(A) The local setup is using a single computer to connect to the NI-Daq and BioSemi devices and record the streams
using LSL LabRecorder. (B) The network setup uses separate computers to connect to the NI-Daq, BioSemi, and the LSL
LabRecorder.

11

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

We expected to observe a constant offset (setup offset)
between the two markers (i.e., DataIn Marker and BioSemi
Marker) due to the setup and network topology, plus some
jitter. We ran the NI-Daq controller, BioSemi, and
LabRecorder on (1) a single machine (Intel Windows 7) to
test the LSL’s local performance and (2) used separate
network-attached machines for each of the NI-Daq control-
ler, BioSemi, and LabRecorder (Intel Windows 7 for NI-Daq
and Intel Windows 10 for each BioSemi and LabRecorder)
to test LSL’s network performance. We analyzed the differ-
ence of 1500 high-points generated by NI-Daq and BioSemi
systems to quantify jitter and setup offset.

Here, we purposefully avoided using state-of-the-art
machines in order to test LSL performance on a more
typical PC data acquisition setup.

3.1.  Instrument latency in a local LSL setup

The results showed a 5-ms lead time between the time a
DataIn Marker was issued, and the pulse events satisfied

our defined threshold (Fig. 4A). This is well below the
100-ms resolution of the NI-Daq reader, so we consid-
ered this lead time negligible. Comparing the BioSemi
Marker and the DataIn Marker latencies indicated a
12.20 ms setup offset between the two markers (Fig. 4B).
The jitter of this offset, that is the standard deviation of
the lag (see Fig. 4B) was 156 ms, below the ˜500-ms
Biosemi time resolution. Thus, the two streams could be
aligned by removing this (pre-measured) device setup
offset, and time jitter should not affect this alignment.

3.2.  Instrument latency in a networked LSL setup

To assess the setup offset of the instrument (in this exam-
ple the BioSemi amplifier) in a distributed network, we
separated the program controlling the NI-Daq (sending
the DataIn Marker and storing pulse events), the program
sending the BioSemi stream, and LabRecorder to
network-attached computers. The results showed an
even smaller setup offset between the DataIn Marker and

Fig. 4.  Single-machine (local) and multi-machine synchronization performance. (A) The Ni-DAQ outputs a pulse event to
the computer as an LSL inlet every time a pulse signal is generated. Am Ni-DAQ input records the output signal and sends
it to another LSL inlet. The DataIn Marker is created from this input after as the pulse is detected. (B) DataIn and BioSemi
are recorded the same signal on the same computer. The DataIn and BioSemi Markers indicate pulse detection by each
instrument, respectively. (C) DataIn and BioSemi are recorded the same signal but on two separate machines attached by
a wired network. Computation overhead of recording multiple signals on a local machine may have attributed to the larger
offset on the local setup compared to the network-attached setup.

12

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

the BioSemi Marker than the results observed in the
single-machine LSL performance test (here, networked
offset: 6.26 ms, vs. local offset: 12.20 ms, (Fig. 4C)). The
offset jitter (presented as the standard deviation of the
offset, (Fig. 4C)) was 145 ms, similar to the results from
the local network experiment.

This offset decrease might have arisen from the sep-
aration, here, of the BioSemi and NI-Daq machines and
potentially by faster performance of the BioSemi appli-
cation and the associated driver running on Windows
10. However, the total setup delay for a given instru-
ment is frequently dominated by device transmission
delays, including large on-device buffer sizes that are
only periodically transmitted, wireless (e.g., Bluetooth)
protocol transmission latencies, and may add up to
several 10 s of milliseconds. Such discrepancies under-
pin the importance of testing setup offset (including
device throughput) for all devices and configurations
before recording experiment data. Setup offsets can be
manually added to the metadata while the other poten-
tial ad-hoc offsets caused by the network delay or
asynchrony would be recorded into the XDF automati-
cally. Both types of offsets will be addressed upon
importing the XDF files with the help of the LSL Time
synchronization protocol (section 2.2.5) and using the

load_xdf function (https://github​.com​/xdf​-modules​
/xdf​-Matlab​/blob​/master​/load​_xdf​.m).

3.3.  Multi-instrument synchronization

To explore the synchronization performance of multi-
modal recordings on a single PC, a typical research use-
case scenario, we measured the jitter between
professional-grade acquisition devices (Noraxon Ultium
EMG combined with a Labjack T7-pro, and Ant Neuro
EEG) as well as a consumer-grade webcam (Logitech
C920S HD Pro Webcam) using a standard laptop (Lenovo
X1 Carbon Gen 7). To avoid potential delays due to
hardware-related TTL triggering, we created two syn-
chronized square wave analog signals, appropriately
scaled and conditioned according to device specifica-
tions, and injected them directly into EEG and EMG elec-
trodes respectively. These bipolar signals were then
acquired and streamed over the local network as physio-
logical data. We simultaneously generated a blinking LED
via an Arduino Zero device, captured it via the webcam,
and streamed it via LSL over the network along with the
EEG and EMG data (Fig. 5A).

The experimental setup consisted of three data
streams: EEG sampled at approximately 2000 Hz, EMG

Fig. 5.  Multi-device synchronization on a local machine. (A) The trigger signal was recorded by an EEG, EMG, and a
webcam recording device. Each device transmitted their recording to a single machine. Red dashed boxes indicate zoomed-
in looks to the data. (B) EEG signal was tranmistted at each sample, while EMG signal was transmitted by about 20 ms
chunks. (C) After correcting for the signal offset and jitter, the difference between the EEG and EMG signals was <0.5 ms.

https://github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m
https://github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m

13

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

sampled at similar rates, and webcam data captured at
standard 30 frames per second. All streams were
recorded using LabRecorder software in XDF format for
10 min. Data were analyzed using MATLAB (R2024b) and
imported using both default parameters (HandleJitter
= true) and with jitter handling disabled (HandleJit-
ter = false). The timing of rising fronts of the EEG and
EMG square waves and LED activation times were com-
puted, subtracted pairwise, and centered to the mean to
create Camera vs. EEG, Camera vs. EMG, and EEG vs.
EMG jitter distributions.

We observed distinct transmission characteristics
between different device types (Fig. 5B). The EEG device
demonstrated single-sample transmission with minimal
jitter, while the EMG device used chunk-based transmis-
sion resulting in characteristic periodic timing patterns.
The webcam showed more irregular timing behavior typ-
ical of consumer-grade devices with variable frame rates
Fig. 6A).

The synchronization analysis revealed that sub-
millisecond jitter is achievable on standard consumer-
grade laptops using default LSL parameters
(HandleJitter = true) when professional hardware
with “uniform” sampling rates is employed (Fig. 5). This
was demonstrated for both EEG and EMG devices
tested. The jitter-corrected latency between EEG and
EMG streams showed a tight distribution centered around
zero with standard deviation of approximately 0.5 ms,
indicating excellent synchronization performance.

However, synchronization performance varied signifi-
cantly with device type and parameter settings. Disabling
jitter handling (HandleJitter = false) increased jitter

by at least one order of magnitude for professional-grade
devices, as shown in the EEG-EMG comparison where
the uncorrected jitter distribution was substantially
broader. Interestingly, for consumer-grade hardware such
as a webcam, disabling jitter handling sometimes
improved synchronization. This occurs because highly
irregular sampling rates violate the Gaussian delay distri-
bution assumptions underlying the jitter correction algo-
rithm (Fig. 6).

Our results demonstrate that LSL’s built-in jitter cor-
rection is highly effective for professional-grade devices
with consistent sampling rates, achieving sub-millisecond
synchronization accuracy. However, users should care-
fully evaluate their specific hardware configurations, as
delays between streams can vary over time and differ
between hardware setups. Factors such as varying CPU
clock speeds due to thermal throttling, operating system
prioritization due to workload changes, and hardware-
level energy saving features can all affect jitter and delays.
Therefore, users are encouraged to test their hardware
configurations before critical acquisitions and optimize
data analysis pipelines according to their setup’s charac-
teristics.

4.  PITFALLS AND TWEAKS

LSL’s timing can be influenced by network congestion,
device-specific buffering, and clock-drift between hosts.
Also, LSL cannot account for internal hardware delays
and researchers must determine this delay at least once
every time their setup configuration (including adding or
removing instruments or netwrok clients, updating driv-

Fig. 6.  Effect of jitter correction for large jitter consumer-grade instruments. (A) Time difference between samples
for camera (top) and EEG (bottom) streams, showing irregular timing behavior for consumer-grade devices versus
professional-grade equipment. Red dashed boxes indicate zoomed-in looks to the data. (B) Latency distributions between
EEG and camera streams before (left) and after (right) jitter correction. Unlike professional-grade device pairs, consumer-
grade cameras may show better synchronization with jitter correction disabled, as irregular sampling rates violate
Gaussian delay assumptions of the correction algorithm.

14

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

ers or operating system) changes. This section gathers
known challenges and hands-on remedies so that
researchers can (i) anticipate sources of error before data
collection and (ii) apply configuration tweaks or offline
corrections to retain sub-millisecond alignment.

4.1.  Transmission latency

Transmitting the timestamped data through the LSL net-
work also poses some latency between the outlet and
inlets. It is important to reemphasize that data is time-
stamped by the outlet immediately upon receipt from the
data source (e.g., device), and therefore, data transmis-
sion latency over the network generally does not intro-
duce errors in timestamps. However, such delays may
pose some challenges for real-time applications, which
want to responsd to received data in a timely manner.

4.2.  Determining the setup offset

As we demonstrated above, adjusting recording times for
setup offset is imperative for successful multimodal data
acquisition and synchronization. Modifying the setup
configuration (e.g., moving an outlet from one machine to
another) may change the setup offset. Any change in net-
work configurations or updates to their software, drivers,
or operating systems should prompt a recheck. Here, we
present a simple yet effective procedure to determine
setup offset for every instrument, a process similar to that
described above in section 3.1.

To determine the setup offset of an instrument, we
suggest using a microcontroller unit (e.g., an Arduino)
board to send TTL pulses to both the LSL network and to
the instrument as a data input (Fig. 7). Publishing the TTL
pulse as a DataIn Marker can be accomplished through a
control software that registers the TTL pulses, or can be
directly published by the MCU, since the LSL developer
community has provided support for running liblsl on
some MCUs. The data from the instrument should then
be streamed to the LSL network. Both the DataIn Marker
and the instrument data should be recorded using
LabRecorder or an equivalent recording software. The
setup should be chosen in a way that most exactly rep-
resents the experiment configuration. After reconstruct-
ing a marker that corresponds to the TTL pulses from the
instrument data (instrument marker, similar to the BioSemi
Marker in section 3.1), the average offset between time-
stamps of the DataIn markers and the instrument marker
is the setup offset.

We should note that setup offset can be either positive
or negative. A positive offset means that the instrument
marker occurs after the DataIn marker, indicating an
instrument lag in capturing and transmitting the data to

the recorder. A negative offset means the instrument
marker occurs before the DataIn marker; this may hap-
pen for sensory triggers (e.g., auditory pulses) where the
instrument marker is the time that the trigger pulse is sent
to the auditory transducer (e.g., a loudspeaker), while the
DataIn marker indicates the time at which the transducer
actually produces the pulse.

A successful setup with sub-millisecond internal delay
using an affordable MCU board (Arduino) has been
benchmarked and could be easily replicated from
(Appelhoff & Stenner, 2021). A commercial solution using
dedicated hardware for determining setup offsets is also
available from Neurobehavioral Systems, Inc. We again
strongly encourage researchers to use these instruments
to determine the setup offset and also to verify LSL’s
determination of network delays.

4.3.  Common device and network issues

LSL can address some known hardware failures or net-
work connectivity issues. Sometimes, a hardware device
may exhibit a significant change in sampling rate (e.g., in
our experience, a webcam that frequently switches
between 30 and 60 frames per second) or suffer from high
and variable packet loss (e.g., a Bluetooth device that
goes in and out of operational range). In these cases, the
load_xdf’s attempt to linearly smooth the timestamps
will significantly (even catastrophically) distort the data.
This can be checked by comparing the effective sampling
rate as quantified by load_xdf (as the number of sam-
ples divided by the recording length) with the sampling
rate reported in the device metadata. If these two sam-

Fig. 7.  Setup offset determination algorithm. The setup
offset can be determined by sending a TTL pulse from
a microcontroller board to the LSL network and to the
instrument. The instrument data would be streamed to LSL,
and the LSL marker would be recorded using LabRecorder.
The setup offset would be the average offset between the
DataIn marker and the instrument marker.

15

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

pling rates are not close to each other, we suggest calling
load_xdf with the flag ‘HandleJitterRemoval’ set
to false. Oftentimes it is possible to recover such record-
ings with some manual effort thanks to XDF’s policy to
record all underlying ground-truth timing data.

A similar issue can arise by using LSL through a wire-
less local area network (WLAN). If there are multiple
streams on a heavily utilized WLAN, the clock offset
packet exchange can sometimes overload the network
and cause gaps in the data. In this case, it may be appro-
priate to optimize the LSL configuration file for WLAN.
The recommended settings for WLANs are:

[tuning]
TimeProbeMaxRTT = 0.100
TimeProbeInterval = 0.010
TimeProbeCount = 10
TimeUpdateInterval = 0.25
MulticastMinRTT = 1.0
MulticastMaxRTT = 30

This text can be placed in a file called lsl_api.cfg.
If this file is in the same folder as the device’s LSL appli-
cation, these settings would only be applied to the device.
If the file is in ~/lsl_api/, the changes would be
applied to the user globally. If the file is placed in an /etc
folder (C:\etc on Windows), the tweaks will be global
for all users.

Since applications can supply their own time stamps
upon submitting a sample to LSL, potentially outside of the
control of the user, it is possible to selectively ignore such
time stamps via the user-facing configuration file. This can
be necessary when a third-party application uses non-
standard time stamps (e.g., from an alternative clock source
such as on-device clocks). Since LSL tracks time offset
between host machines and not between arbitrary
application-chosen clocks, in such cases the recorded data
would appear mutually unsynchronized. To rectify this, the
user can put the following lines into their lsl_api.cfg:

[tuning]
ForceDefaultTimestamps = 1

4.4.  Use in neurostimulation

A natural extension of LSL’s capabilities is its integration
with stimulation paradigms such as transcranial mag-
netic stimulation (TMS), transcranial electrical stimulation
(tES), transcranial ultrasound stimulation (TUS), and oth-
ers. LSL can facilitate such setups by recording stimula-
tion onset event markers or the stimulus trains themselves
at their native resolution, which allows for post-hoc cor-
relation analysis with respect to neural data. LSL’s ability

to access neural data with low transmission delay also
facilitates time-synchronized paradigms, including
phase-locked or neural burst triggered neurostimulation
(Shirinpour et al., 2020).

Integration approaches generally fall into hardware-
based solutions (manufacturer-integrated systems9 or
third-party bridges) and software-based coordination
through frameworks, and both solutions can benefit from
implementing LSL as their biosignal and trigger synchro-
nization framework. Recent comparative studies demon-
strate that while hardware-based synchronization
achieves superior timing precision, software-based LSL
approaches offer greater experimental flexibility for multi-
device integration (Miziara et al., 2025). Advanced
closed-loop systems now achieve sub-millisecond preci-
sion through novel synchronization methods (Kahilakoski
et al., 2025), indicating the field’s rapid evolution toward
sophisticated real-time paradigms.

When implementing such paradigms, it is important to
assess timing requirements and measure both timing error
and transmission latency of the envisioned LSL setup.
When participant safety considerations arise from timing
imperfections (e.g., network latency spikes from wireless
connections), researchers should consider acquiring data
directly from hardware to drive closed-loop stimulus gen-
eration, avoiding network links along the signal path. LSL
can facilitate development of such tailored setups through
its broad suite of open-source device integrations, which
can be repurposed to build direct data paths with mini-
mum latency. Since many devices allow only single-client
access, the same program can optionally generate LSL
streams for recording purposes, as submitting data to LSL
outlets is non-blocking and completes within microsec-
onds with low jitter.

We view this as an important area for future develop-
ment, and invite and encourage collaboration with
researchers working on concurrent stimulation-recording
setups to extend LSL’s utility and safety in neuromodula-
tion research.

5.  SUMMARY AND CONCLUSION

The Lab Streaming Layer is a now well-established,
reliable, and easy-to-use multimodal signal acquisition,
transmission, and recording platform tuned for syn-
chronously recording multimodal brain and behavioral
data. Often, using LSL with a given device can be as
simple as enabling LSL support in a vendor-provided
data acquisition software, if supported, or using one of
the existing open-source integrations for the device,

9  e.g., Magstim-EGI integrated EEG+TMS systems or MxN-Pro featuring
LSL.

16

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

and recording the data on the same or another machine
with the LabRecorder or another LSL-compatible
recording tool. However, LSL also scales to complex
setups involving multiple machines and several dozen
acquisition devices or data streams. In one multi-
person, multiple touchscreen simulation (C. Kothe
et al., 2018), we successfully used LSL to record from
over 40 LSL data streams10 in recording sessions last-
ing multiple hours.

Recent benchmarks have demonstrated that LSL
achieves sub-millisecond synchronization accuracy
(Blum et al., 2021; Chuang et al., 2021; Iwama et al.,
2022), which is on par with or surpasses the timing pre-
cision of most existing software-based multimodal
acquisition frameworks used in neuroscience. For exam-
ple, BRAND reported up to 0.5 ms in its “inter-node”
communication, that is, prior to running additional pro-
cessing or feature extraction pipelines (Ali et al., 2023).
The Falcon framework also reported <1 ms latency for
Neuralynx hardware, but identified that the latency can
increase to multiple milliseconds for long recordings
(Ciliberti & Kloosterman, 2017). Since LSL periodically
quantifies the clock offsets and round-trip times between
streams, its synchronization accuracy is not affected
with the recording length. Our exemplar tests support
the excellent sub-millisecond accuracy of the LSL time-
stamps. As our tests also showed, distributing the com-
putational load of processing multiple streams across
separate network-attached machines can at times out-
perform the setup offset (and latency) achieved by cap-
turing all data streams on a single, perhaps heavily
loaded, machine, which is made trivial thanks to LSL’s
ability to seamlessly discover streams across the net-
work without additional configuration. For users requir-
ing hardware-level synchronization or TTL integration,
the commercial LabStreamer device from Neurobehav-
ioral Systems (see section 4.2) provides a dedicated
plug-and-play solution tightly integrated with LSL.

LSL as a purely software-based approach has an
inherent limitation when no hardware triggering mecha-
nisms are used, which is that LSL as a network is not
aware of any latency occurring within the acquisition
device or in the device drivers before data reaches the
LSL application for the device. While LSL integrations
can make reasonable assumptions, and some do, any
residual offset in this latency, which typically amounts to
a few 10s of milliseconds, should be ascertained prior to
conducting a study, ideally through testing using the
actual devices and parameter settings to be used during

subsequent recordings. A similar limitation applies to
event marker time stamps pertaining to button presses or
on-screen presentation, where, again, it is recommended
to measure the input and/or display latency using off-the-
shelf tools such as photodiodes or high frame rate cam-
eras. Lastly, when the consistency of the device sampling
rate itself and/or the stability of its setup offset cannot be
trusted, it may be necessary to implement a hardware-
based data timing device to monitor the process at least
for the affected device(s). Therefore, while LSL can
recover lost connections and compensate for offsets and
jitter, an appropriate initial setup of the instruments and
measuring setup offset are imperative for an optimally
synchronized multimodal recording.

While LSL accommodates a relatively large buffer to
minimize data loss in case of a connection drop or sub-
par network speed, given a long enough (e.g., a few min-
utes) network disconnection, the buffer may eventually
run out with the resulting loss of data. Similarly, LSL data
throughput is limited by network and computer capacity.
While many data streams can be easily transferred at
multiple KHz rates, some data streams, such as high-
definition video, may saturate the bandwidth. In such a
case, using lightweight compression before broadcasting
the stream or storing the timestamped data on the local
machine and only streaming the timestamps through LSL
may resolve this issue.

A large ecosystem, transparent codebase and devel-
opment, zero-configuration, excellent latency manage-
ment, and reliability have made LSL a go-to solution for
synchronized multimodal quantification of brain and
behavior. Since its introduction in 2012, LSL has been
cited over 2300 times, with citations accelerating in
recent years, reflecting its growing adoption across the
scientific community. Researchers can enjoy LSL with
minimal and one-time initial setup and be sure that LSL
will stream and store their multimodal data streams accu-
rately and reliably. Finally, LSL development thrives on an
open and welcoming community of enthusiasts. Anyone
can join this effort via LSL’s community hubs.

DATA AND CODE AVAILABILITY

The Lab Streaming Layer (LSL) is free, open-source
software maintained by dedicated volunteers. The core
library and related packages are available at https://
github​.com​/labstreaminglayer, with the core reposito-
ries available from the Swartz Center for Computational
Neuroscience (SCCN) GitHub: meta-package and core
library. Additional resources, documentation, and a list
of compatible devices can be found at https://lab-
streaminglayer​.org. The Extensible Data Format (XDF),
used for storing LSL data, is also freely available, with

10  Two concurrent subjects, each with instruments including a 267-channel
BioSemi, microphone, force plate, eye-tracking, three cameras, motion cap-
ture, and event marker streams.

https://github.com/labstreaminglayer
https://github.com/labstreaminglayer
https://labstreaminglayer.org
https://labstreaminglayer.org

17

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

tools and specifications accessible at https://github​
.com​/sccn​/xdf.

AUTHOR CONTRIBUTIONS

C.K. and S.M. conceptualized the LSL ecosystem. C.K.,
T.M., and S.M. devised the methodology. C.K., T.M., and
M.I.G. worked in-house on the software. C.K., T.S., D.M.,
C.B., T.M., and A.D. worked on and maintained the soft-
ware as an open-source project. S.Y.S., C.K., T.S., D.M.,
C.B., F.A., and T.M. wrote the manuscript. F.A. provided
confirmatory experiments. S.Y.S. generated the final
visualizations. All authors reviewed and edited the manu-
script. S.M. provided the funding.

DECLARATION OF COMPETING INTEREST

C.K. and T.M. have received compensation from Intheon,
which offers LSL-based products and services. T.S.,
D.M., C.B., and M.I.G. have provided consulting services
or worked on LSL-based products.

ACKNOWLEDGMENTS

LSL software was developed at the Swartz Center for
Computational Neuroscience, UCSD, funded by the
Army Research Laboratory under Cooperative Agree-
ment Number W911NF-10-2-0022, NINDS grant
R01NS047293, and a gift from The Swartz Foundation
(Old Field, NY).

REFERENCES

Ali, Y. H., Bodkin, K., Rigotti-Thompson, M., Patel, K., Card,
N. S., Bhaduri, B., Nason-Tomaszewski, S. R., Mifsud,
D. M., Hou, X., Nicolas, C., Allcroft, S., Hochberg, L. R.,
Yong, N. A., Stavisky, S. D., Miller, L. E., Brandman,
D. M., & Pandarinath, C. (2023). BRAND: A platform for
closed-loop experiments with deep network models.
bioRxiv, 2023.08.08.552473. https://doi​.org​/10​.1101​
/2023​.08​.08​.552473

ANSI. (2017). Standard for consumer EEG file format.
https://doi​.org​/10​.3403​/02957631

Appelhoff, S., & Stenner, T. (2021). In COM we trust:
Feasibility of USB-based event marking. Behav Res
Methods, 53(6), 2450–2455. https://doi​.org​/10​.3758​
/s13428​-021​-01571​-z

Artoni, F., Barsotti, A., Guanziroli, E., Micera, S., Landi, A., &
Molteni, F. (2017). Effective synchronization of EEG and
EMG for mobile brain/body imaging in clinical settings.
Front Hum Neurosci, 11, 652. https://doi​.org​/10​.3389​
/fnhum​.2017​.00652

Bannach, D., Amft, O., & Lukowicz, P. (2009). Automatic
event-based synchronization of multimodal data streams
from wearable and ambient sensors. Lecture notes in
computer science (pp. 135–148, Vol. 135). Springer
Berlin Heidelberg. https://doi​.org​/10​.1007​/978​-3​-642​
-04471​-7​_11

Blum, S., Hölle, D., Bleichner, M. G., & Debener, S. (2021).
Pocketable labs for everyone: Synchronized multi-sensor

data streaming and recording on smartphones with
the lab streaming layer. Sensors (Basel), 21(23), 8135.
https://doi​.org​/10​.3390​/s21238135

Breitwieser, C., & Eibel, C. (2011). TiA – Documentation of
TOBI interface a. arXiv [cs.NI]. https://doi​.org​/10​.32614​
/cran​.package​.arxiv

Bustamante, S., Peters, J., Scholkopf, B., Grosse-Wentrup,
M., & Jayaram, V. (2021). ArmSym: A virtual human-robot
interaction laboratory for assistive robotics. IEEE Trans
Hum Mach Syst, 51(6), 568–577. https://doi​.org​/10​.1109​
/thms​.2021​.3106865

Cerone, G. L., Giangrande, A., Ghislieri, M., Gazzoni, M.,
Piitulainen, H., & Botter, A. (2022). Design and validation
of a wireless body sensor network for integrated EEG
and HD-sEMG acquisitions. IEEE Trans Neural Syst
Rehabil Eng, 30, 61–71. https://doi​.org​/10​.1109​/TNSRE​
.2022​.3140220

Chuang, C.-H., Lu, S.-W., Chao, Y.-P., Peng, P.-H., Hsu,
H.-C., Hung, C.-C., Chang, C.-L., & Jung, T.-P. (2021).
Near-zero phase-lag hyperscanning in a novel wireless
EEG system. J Neural Eng, 18(6). https://doi​.org​/10​.1088​
/1741​-2552​/ac33e6

Ciliberti, D., & Kloosterman, F. (2017). Falcon: A highly
flexible open-source software for closed-loop
neuroscience. J Neural Eng, 14(4), 045004. https://doi​
.org​/10​.1088​/1741​-2552​/aa7526

Clisson, P., Bertrand-Lalo, R., Congedo, M., Victor-Thomas,
G., & Chatel-Goldman, J. (2019). Timeflux: An open-
source framework for the acquisition and near real-time
processing of signal streams. 8th International Brain-
Computer Interface Conference. https://doi​.org​/10​.3217​
/978​-3​-85125​-682​-6​-17

Deering, D. S. E. (1989). Host extensions for IP multicasting.
https://doi​.org​/10​.17487​/RFC1112

Delgan. (n.d.). Loguru: Python logging made (stupidly)
simple. https://doi​.org​/10​.1515​/9783110473650​-025

Dold, M., Pereira, J., Janssen, M., & Tangermann, M.
(2023). Project dareplane for closed-loop deep brain
stimulation. Brain Stimul, 16(1), 319–320. https://doi​.org​
/10​.1016​/j​.brs​.2023​.01​.591

Drepper, U. (2011). How to write shared libraries
(technical report) https://www​.cs​.dartmouth​.edu​/sergey​
/cs108​/ABI​/UlrichDrepper​-How​-To​-Write​-Shared​
-Libraries​.pdf

Fielding, R. T., Nottingham, M., & Reschke, J. (n.d.).
RFC 9110: HTTP semantics. https://doi​.org​/10​.17487​
/rfc9110

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A.,
Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T.,
Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG
data analysis with MNE-python. Front Neurosci, 7, 267.
https://doi​.org​/10​.3389​/fnins​.2013​.00267

IEEE SA Standards Board. (2018). IEEE standard for
information technology–portable operating system
interface (POSIX(TM)) base specifications, issue 7.
https://doi​.org​/10​.1109​/ieeestd​.2018​.8277153

IEEE SA Standards Board. (2020). IEEE standard for a
precision clock synchronization protocol for networked
measurement and control systems. https://doi​.org​/10​
.1109​/IEEESTD​.2020​.9120376

Iwama, S., Takemi, M., Eguchi, R., Hirose, R., Morishige,
M., & Ushiba, J. (2022). Two common issues in
synchronized multimodal recordings with EEG: Jitter
and latency. bioRxiv. https://doi​.org​/10​.1101​/2022​.11​.30​
.518625

Kahilakoski, O.-P., Alkio, K., Siljamo, O., Valén, K.,
Laurinoja, J., Haxel, L., Makkonen, M., Mutanen, T. P.,
Tommila, T., Guidotti, R., Pieramico, G., Ilmoniemi, R. J.,
& Roine, T. (2025). NeuroSimo: An open-source software

https://github.com/sccn/xdf
https://github.com/sccn/xdf
https://doi.org/10.1101/2023.08.08.552473
https://doi.org/10.1101/2023.08.08.552473
https://doi.org/10.3403/02957631
https://doi.org/10.3758/s13428-021-01571-z
https://doi.org/10.3758/s13428-021-01571-z
https://doi.org/10.3389/fnhum.2017.00652
https://doi.org/10.3389/fnhum.2017.00652
https://doi.org/10.1007/978-3-642-04471-7_11
https://doi.org/10.1007/978-3-642-04471-7_11
https://doi.org/10.3390/s21238135
https://doi.org/10.32614/cran.package.arxiv
https://doi.org/10.32614/cran.package.arxiv
https://doi.org/10.1109/thms.2021.3106865
https://doi.org/10.1109/thms.2021.3106865
https://doi.org/10.1109/TNSRE.2022.3140220
https://doi.org/10.1109/TNSRE.2022.3140220
https://doi.org/10.1088/1741-2552/ac33e6
https://doi.org/10.1088/1741-2552/ac33e6
https://doi.org/10.1088/1741-2552/aa7526
https://doi.org/10.1088/1741-2552/aa7526
https://doi.org/10.3217/978-3-85125-682-6-17
https://doi.org/10.3217/978-3-85125-682-6-17
https://doi.org/10.17487/RFC1112
https://doi.org/10.1515/9783110473650-025
https://doi.org/10.1016/j.brs.2023.01.591
https://doi.org/10.1016/j.brs.2023.01.591
https://www.cs.dartmouth.edu/sergey/cs108/ABI/UlrichDrepper-How-To-Write-Shared-Libraries.pdf
https://www.cs.dartmouth.edu/sergey/cs108/ABI/UlrichDrepper-How-To-Write-Shared-Libraries.pdf
https://www.cs.dartmouth.edu/sergey/cs108/ABI/UlrichDrepper-How-To-Write-Shared-Libraries.pdf
https://doi.org/10.17487/rfc9110
https://doi.org/10.17487/rfc9110
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1109/ieeestd.2018.8277153
https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1101/2022.11.30.518625
https://doi.org/10.1101/2022.11.30.518625

18

C. Kothe, S.Y. Shirazi, T. Stenner et al.	 Imaging Neuroscience, Volume 3, 2025

for closed-loop EEG- or EMG-guided TMS. bioRxiv,
2025.04.05.647342. https://doi​.org​/10​.1101​/2025​.04​.05​
.647342

Kang, T., & Wallraven, C. (2023). Gotta go fast: Measuring
input/output latencies of virtual reality 3D engines for
cognitive experiments. arXiv [cs.HC]. https://doi​.org​/10​
.1109​/vr​.2016​.7504690

Kapoulkine, A. (n.d.). Pugixml: Light-weight, simple and fast
XML parser for c++ with XPath support. https://doi​.org​
/10​.1007​/978​-1​-4302​-0829​-7​_2

Kohlhoff, C. (n.d.). Boost.asio - 1.82.0. https://doi​.org​/10​
.32614​/cran​.package​.asioheaders

Koranne, S. (2011). Boost c++ libraries. In Handbook of
open source tools (pp. 127–143). Springer US. https://doi​
.org​/10​.1007​/978​-1​-4419​-7719​-9​_6

Kothe, C., Mullen, T., & Makeig, S. (2018). Strum: A
new dataset for neuroergonomics research. 2018
IEEE International Conference on Systems, Man, and
Cybernetics, 77–82. https://doi​.org​/10​.1109​/smc​.2018​
.00023

Kothe, C. A., & Makeig, S. (2013). BCILAB: A platform for
brain-computer interface development. J Neural Eng,
10(5), 056014. https://doi​.org​/10​.1088​/1741​-2560​/10​/5​
/056014

Levitt, J., Yang, Z., Williams, S. D., Lütschg Espinosa, S. E.,
Garcia-Casal, A., & Lewis, L. D. (2022). EEG-LLAMAS:
An open source, low latency, EEG-fMRI neurofeedback
platform. bioRxiv. https://doi​.org​/10​.1101​/2022​.11​.21​
.515651

Lopes, G., Bonacchi, N., FrazÃ£o, J., Neto, J. P., Atallah,
B. V., Soares, S., Moreira, L., Matias, S., Itskov, P. M.,
Correia, P. A., Medina, R. E., Calcaterra, L., Dreosti, E.,
Paton, J. J., & Kampff, A. R. (2015). Bonsai: An event-
based framework for processing and controlling data
streams. Front Neuroinform, 9, 7. https://doi​.org​/10​.3389​
/fninf​.2015​.00007

Maidhof, C., Kästner, T., & Makkonen, T. (2014). Combining
EEG, MIDI, and motion capture techniques for
investigating musical performance. Behav Res Methods,
46(1), 185–195. https://doi​.org​/10​.3758​/s13428​-013​
-0363​-9

Makeig, S., Gramann, K., Jung, T.-P., Sejnowski, T. J., &
Poizner, H. (2009). Linking brain, mind and behavior. Int
J Psychophysiol, 73(2), 95–100. https://doi​.org​/10​.1016​/j​
.ijpsycho​.2008​.11​.008

Martin, J., Burbank, J., Kasch, W., & Mills, D. L. (2010).
RFC 5905: Network time protocol version 4: Protocol

and algorithms specification. https://doi​.org​/10​.17487​
/rfc5905

Merino-Monge, M., Molina-Cantero, A. J., Castro-Garcia,
J. A., & Gomez-Gonzalez, I. M. (2020). An easy-to-use
multi-source recording and synchronization software for
experimental trials. IEEE Access, 8, 200618–200634.
https://doi​.org​/10​.1109​/access​.2020​.3034770

Miziara, I. M., Fallon, N., Marshall, A., & Lakany, H. (2025).
A comparative study to assess synchronisation methods
for combined simultaneous EEG and TMS acquisition.
Sci Rep, 15(1), 12816. https://doi​.org​/10​.1038​/s41598​
-025​-97225​-7

Möller, B., Morse, K. L., Lightner, M., Little, R., & LutZ, R.
(2008). HLA evolved - A summary of major technical
improvements. https://pitchtechnologies​.com​/wp​
-content​/uploads​/2020​/09​/08F​-SIW​-064​.pdf

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby,
E., Delannoy, V., Bertrand, O., & Lécuyer, A. (2010).
OpenViBE: An open-source software platform to design,
test, and use brain-computer interfaces in real and virtual
environments. Presence (Camb), 19(1), 35–53. https://doi​
.org​/10​.1162​/pres​.19​.1​.35

Santamaría-Vázquez, E., Martínez-Cagigal, V., Marcos-
Martínez, D., Rodríguez-González, V., Pérez-Velasco, S.,
Moreno-Calderón, S., & Hornero, R. (2023). MEDUSA©:
A novel python-based software ecosystem to accelerate
brain-computer interface and cognitive neuroscience
research. Comput Methods Programs Biomed,
230(107357), 107357. https://doi​.org​/10​.1016​/j​.cmpb​
.2023​.107357

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer,
N., & Wolpaw, J. R. (2004). BCI2000: A general-purpose
brain-computer interface (BCI) system. IEEE Trans
Biomed Eng, 51(6), 1034–1043. https://doi​.org​/10​.1109​
/TBME​.2004​.827072

Shirinpour, S., Alekseichuk, I., Mantell, K., & Opitz, A.
(2020). Experimental evaluation of methods for real-time
EEG phase-specific transcranial magnetic stimulation. J
Neural Eng, 17(4), 046002. https://doi​.org​/10​.1088​/1741​
-2552​/ab9dba

Weber, D., Hertweck, S., Alwanni, H., Fiederer, L. D. J.,
Wang, X., Unruh, F., Fischbach, M., Latoschik, M. E., &
Ball, T. (2021). A structured approach to test the signal
quality of electroencephalography measurements
during use of head-mounted displays for virtual reality
applications. Front Neurosci, 15, 733673. https://doi​.org​
/10​.3389​/fnins​.2021​.733673

https://doi.org/10.1101/2025.04.05.647342
https://doi.org/10.1101/2025.04.05.647342
https://doi.org/10.1109/vr.2016.7504690
https://doi.org/10.1109/vr.2016.7504690
https://doi.org/10.1007/978-1-4302-0829-7_2
https://doi.org/10.1007/978-1-4302-0829-7_2
https://doi.org/10.32614/cran.package.asioheaders
https://doi.org/10.32614/cran.package.asioheaders
https://doi.org/10.1007/978-1-4419-7719-9_6
https://doi.org/10.1007/978-1-4419-7719-9_6
https://doi.org/10.1109/smc.2018.00023
https://doi.org/10.1109/smc.2018.00023
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1101/2022.11.21.515651
https://doi.org/10.1101/2022.11.21.515651
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3758/s13428-013-0363-9
https://doi.org/10.3758/s13428-013-0363-9
https://doi.org/10.1016/j.ijpsycho.2008.11.008
https://doi.org/10.1016/j.ijpsycho.2008.11.008
https://doi.org/10.17487/rfc5905
https://doi.org/10.17487/rfc5905
https://doi.org/10.1109/access.2020.3034770
https://doi.org/10.1038/s41598-025-97225-7
https://doi.org/10.1038/s41598-025-97225-7
https://pitchtechnologies.com/wp-content/uploads/2020/09/08F-SIW-064.pdf
https://pitchtechnologies.com/wp-content/uploads/2020/09/08F-SIW-064.pdf
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1016/j.cmpb.2023.107357
https://doi.org/10.1016/j.cmpb.2023.107357
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1088/1741-2552/ab9dba
https://doi.org/10.1088/1741-2552/ab9dba
https://doi.org/10.3389/fnins.2021.733673
https://doi.org/10.3389/fnins.2021.733673

