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ABSTRACT

Accurately recording the interactions of humans or other organisms with their environment and other agents 
requires synchronized data access via multiple instruments, often running independently using different clocks. 
Active, hardware-mediated solutions are often infeasible or prohibitively costly to build and run across arbitrary 
collections of input systems. The Lab Streaming Layer (LSL) framework offers a software-based approach to syn-
chronizing data streams based on per-sample time stamps and time synchronization across a common local area 
network (LAN). Built from the ground up for neurophysiological applications and designed for reliability, LSL offers 
zero-configuration functionality and accounts for network delays and jitters, making connection recovery, offset 
correction, and jitter compensation possible. These features can ensure continuous, millisecond-precise data 
recording, even in the face of interruptions. In this paper, we present an overview of LSL architecture, core features, 
and performance in common experimental contexts. We also highlight practical considerations and known pitfalls 
when using LSL, including the need to take into account input device throughput delays that LSL cannot itself 
measure or correct. The LSL ecosystem has grown to support over 150 data acquisition device classes and to 
establish interoperability between client software written in several programming languages, including C/C++, 
Python, MATLAB, Java, C#, JavaScript, Rust, and Julia. The resilience and versatility of LSL have made it a major 
data synchronization platform for multimodal human neurobehavioral recording, now supported by a wide range of 
software packages, including major stimulus presentation tools, real-time analysis environments, and brain-
computer interface applications. Beyond basic science, research, and development, LSL has been used as a resil-
ient and transparent back-end in deployment scenarios, including interactive art installations, stage performances, 
and commercial products. In neurobehavioral studies and other neuroscience applications, LSL facilitates the 
complex task of capturing organismal dynamics and environmental changes occurring within and across multiple 
data streams on a common timeline.
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recording (MoBI), real-time synchronization
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1.  INTRODUCTION

Recording and modeling brain dynamics supporting 
active, natural cognition involving eye movements, motor, 
and other behavior is becoming an integral part of neuro-
biological research and requires multimodal recording of 
an organism’s neural processes and interactions along 
with concomitant changes in its environment. Successful 
multimodal recording demands adequate temporal reso-
lution and precise synchronization of concurrently 
recorded data streams. In human neuroscience, mobile 
brain/body imaging (MoBI) (Makeig et al., 2009) is a mul-
timodal recording concept involving synchronized 
recording of brain, behavioral, and environmental data 
streams with near millisecond (ms) resolution. Maintain-
ing synchronization at this scale between brain (electro/
magnetoencephalography (EEG/MEG); functional near-
infrared spectroscopy (fNIRS), etc.), behavioral (body 
motion capture and eye movement tracking), physiologi-
cal (electromyography, EMG, etc.), and environmental 
data streams (video, treadmill, balance plate, robots, or 
other agent positions and forces, sensory stimulation, 
etc.) often requires multiple computer systems with  
no hardwired common clock to relate the timing of their 
outputs.

Here, we describe the Lab Streaming Layer (LSL), a 
software framework that is helping researchers across 
academic and industrial settings meet the challenge of 
multimodal recording through its ability to collect and 
synchronize data streaming from multiple devices and 
platforms connecting asynchronously to a local area net-
work (LAN) with broad hardware and software compati-
bility. LSL is a freely available open-source project under 
the umbrella of a dedicated GitHub organization https://
github​.com​/labstreaminglayer, plus individual core repos-
itories available from the Swartz Center for Computa-
tional Neuroscience (SCCN) (meta-package and core 
library). A listing of over 150 known LSL-compatible 
device classes is compiled at https://labstreaminglayer​
.org, which also serves as a landing page to tooling, doc-
umentation, and other resources. LSL is supported by an 
active international community of contributors (including 
several coauthors). Currently, two annual workshops in 
Europe and the U.S. bring together platform users, con-
tributors, and developers, and present learning opportu-
nities for newcomers. Organizers currently include the 
SCCN and teams at the University of Oldenburg and TU 
Berlin. The popularity of LSL cannot be explained by any 
one of its features. Rather, its focus on ease of use and 
robustness, and its distributed model that allows syn-
chronization of a wide mix of applications from multiple 
vendors and open-source projects running on multiple 
computers (desktop or mobile) contribute to its appeal, 

as does its broad platform compatibility with most major 
programming languages and all major desktop and 
mobile operating systems. The large LSL ecosystem and 
installed base also contributes to its growing adoption 
and appeal.

One of LSL’s technical features is the synchronization 
of distributed neuroscientific data streams based on a 
peer-to-peer protocol modeled after the Network Time 
Protocol (NTP) as specified in RFC 5905 (Martin et  al., 
2010). A closely related component is LSL’s decomposi-
tion of timing error into three components: a constant, a 
slow-varying, and a noise component, which are each 
addressed separately. Using these two approaches, LSL 
can ensure that timestamps associated with every data 
sample, collected across multiple acquisition devices 
and computers, are accurately compensated for intrinsic 
device delay, clock drift, and jitter in the presence of vari-
able network transmission latency. This capability is cru-
cial in neuroscience research where near-msec precision 
can be essential for accurate data analysis and interpre-
tation, particularly in studies involving complex brain/
body dynamics, high-intensity biomechanics, and multi-
subject interactions.

Challenges in collecting proper multimodal recordings 
include 1) the need to synchronize data streams from dif-
ferent platforms, 2) including data streams with heteroge-
neous sampling frequencies, 3) set up and staff training 
of multiple recording workstations and (possibly propri-
etary) software, 4) interfacing with multiple proprietary 
data access APIs with limited OS and programming lan-
guage support, documentation, and learning resources, 
and 5) meeting challenges in data conversion, integra-
tion, storage, sharing, and reproducibility. Several hard-
ware synchronization tools have been developed to 
address the pre-sampling synchronization in multimodal 
recordings. These include intricate systems of TTL 
(transistor-transistor logic) pulses, equipment for mea-
suring throughput delays of recording instruments, and 
dedicating one instrument recording channel as a syn-
chronizing clock (Artoni et al., 2017; Bannach et al., 2009; 
Maidhof et al., 2014).

Recent advances in hardware-managed synchroniza-
tion can improve common clock accuracy for digitally 
triggered events to tens of microseconds, including solu-
tions based on shared clocks and analog-to-digital (A/D) 
converters and (Chuang et  al., 2021) radio-frequency 
trigger modules (Cerone et al., 2022). However, the use of 
hardware data synchronization approaches is very often 
not feasible in laboratories without resources to engineer 
special-purpose solutions across the range of proprietary 
acquisition systems researchers wish to use in their 
experiments. This is still more the case for low-cost and/
or consumer-grade microelectronics-based systems that 

https://github.com/labstreaminglayer
https://github.com/labstreaminglayer
https://labstreaminglayer.org
https://labstreaminglayer.org
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can now be used to record multimodal data inexpen-
sively in paradigms, allowing, among others, greater 
degrees of participant mobility or at-home use.

Heterogeneous sampling frequency, platform inaccu-
racies, jitter, and sampling fluctuations make synchroni-
zation of the data stream using ‘start/stop’ events 
insufficient for neuroscience purposes. Such a setup 
may cause synchronization to drift by many millisec-
onds within mere minutes of data collection, which typ-
ically grows longer over longer recording durations. A 
recent study of multimodal MoBI data collection meth-
ods concluded that frequent TTL pulses are needed to 
retain millisecond synchronization between data 
streams (Artoni et al., 2017). Without this or some other 
hardware or software organizing method, data streams 
with different sampling frequencies typically drift out of 
synchronization over time, compromising their worth for 
joint analysis.

The setup and maintenance of professional timing 
equipment across multiple workstations running mutually 
incompatible recording software is time-consuming and 
may require a dedicated recording technician and/or 
experimenter team to run, monitor, and document the 
data collected by each system. A dedicated staff training 
process is often required to learn to operate the acquisi-
tion software associated with each system.

Finally, owing to the proprietary nature and variety of 
data collection software and data access means for dif-
ferent systems and the need to record metadata stored in 
different forms and locations, performing data conver-
sion and preprocessing, integration, annotation, storage, 
analysis, and sharing is challenging. All these factors limit 
access to high-quality research capabilities.

1.1.  The broader landscape in multimodal recording

The LSL project was started in 2012 in response to an 
emergent need for robust multi-modal data acquisition at 
the Swartz Center for Computational Neuroscience 
(SCCN), UCSD, by the first author (Christian Kothe), where 
also the multimodal Mobile Brain/Body Imaging (MoBI) 
concept was originally proposed and first demonstrated 
(Makeig et al., 2009). The available software at the time for 
this purpose was a partly proprietary package that was 
then in use at SCCN. Another technology predating LSL is 
the Tobi Interface A (Breitwieser & Eibel, 2011), which 
mainly aimed to standardize the representation of biosig-
nals. HLA Evolved (Möller et al., 2008) was another solu-
tion for robust distributed simulator event tracking, which 
influenced our attention to reliability. There was no real-
time data access protocol natively supported by multiple 
vendors of EEG hardware, let alone of a broader spectrum 
of neurobehavioral modalities.

Shortly after availability, LSL grew rapidly in popularity 
and found enthusiastic supporters both among academic 
labs and hardware manufacturers. As of mid-2025, LSL 
has been mentioned more than 2300 times in scientific 
articles, and is supported by the majority of popular real-
time processing platforms for brain- and bio-signals, 
including BCI2000 (Schalk et  al., 2004), OpenViBE 
(Renard et al., 2010), NeuroPype (Intheon, La Jolla, CA), 
Open Ephys1, BCILAB (C. A. Kothe & Makeig, 2013), and 
MNE-Python (Gramfort et  al., 2013), and younger plat-
forms such as Timeflux (Clisson et al., 2019), MEDUSA 
(Santamaría-Vázquez et al., 2023), and Dareplane (Dold 
et  al., 2023). Since most high-level processing frame-
works have a modular data source concept, most other 
brain-/bio-signal processing platforms can be made LSL 
compatible with relatively little effort and can thereby be 
made to leverage the full breadth of LSL-supported hard-
ware. LSL has also been chosen as an underlying trans-
mission protocol by commercial multi-vendor system 
integrators, including iMotions2 and BrainProducts3.

Since LSL is simultaneously a publish/subscribe over-
lay network and API, a time-synchronization solution, a 
multi-modal time-series and meta-data recording solution, 
and a real-time streaming tool with native support for event 
data, there are to our knowledge not many directly compa-
rable alternatives. When reduced to its network protocol 
aspect, some alternatives are ZeroMQ4, MQTT5, plain 
TCP/IP, and Redis6 (e.g., as used in BRAND (Ali et  al., 
2023)). In the audio control domain, an established proto-
col is Open Sound Control (OSC). Besides Open Epyhs, 
another project supporting multiple types of electrophysi-
ology hardware is BrainFlow7, which currently supports a 
range of low-cost and DIY devices. For instrument and 
lighting control, respectively, well-known examples with 
good timing support are MIDI and DMX, but these do not 
leverage existing Ethernet or Wifi networking. However, it 
should be noted that even these solutions can, and some 
have been, integrated with LSL via bridge adapters. Alter-
natives for time synchronization are the precision time pro-
tocol (PTP) (IEEE SA Standards Board, 2020), which 
requires dedicated hardware, and manual NTP-based syn-
chronization. Without a doubt, numerous research labs 
have developed countless pieces of in-house software 
that acquires data from two or more devices, some of 
which are also open-source projects (e.g., Bonsai (Lopes 
et al., 2015) with its focus on video and electrophysiology 

1  https://open​-ephys​.org
2  https://imotions​.com​/products​/imotions​-lab​/developers​/lsl​-support/
3  https://pressrelease​.brainproducts​.com​/lsl​-viewer/
4  https://zeromq​.org
5  https://mqtt​.org
6  https://redis​.io
7  https://brainflow​.org
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analysis of behaving rodents mainly on Windows worksta-
tions), but to our knowledge, none currently enjoy a degree 
of popularity, broad plug-and-play device compatibility, 
and large installed-base as LSL.

1.2.  LSL limitations

Despite the stringent LSL time synchronization guardrails 
described below, LSL performance has some limitations. 
Most importantly, LSL does not have access to any 
incoming data until the moment it is received by the 
microprocessor (CPU) or microcontroller unit (MCU) on 
which the LSL software communicating with the device  
is running. Thus, LSL cannot itself learn or estimate  
whatever on-device delays within each recording device 
occurred (the intervals accruing between data signal 
input and its arrival in the software). Measuring on-device 
delay (and ideally histogram) at least once for each acqui-
sition stream is, therefore, necessary to allow LSL to con-
vert the recorded times of data arrival into times of data 
capture. Once known, the delays, which LSL models as 
constant in between setup changes, can be accounted 
for and declared in software. This limitation is inherent to 
multimodal neuroscience data acquisition systems engi-
neered without common hardware clock availability.

1.3.  LSL advantages

The LSL approach to synchronized aggregation of con-
current data streams has three main advantages that 
together significantly enhance the data acquisition pro-
cess: 1) Facilitating multi-modal data collection with het-
erogeneous and/or irregular sampling rates, 2) enabling 
distributed measurement and data processing across 
multiple systems, and 3) streamlining both real-time and 
offline access to time-stamped multimodal data through 
its companion XDF file format.

The LSL unified Application Programming Interface 
(API) and protocol standardize data exchange across any 
number of measurement modalities, creating a consis-
tent real-time data stream access interface. This simpli-
fies initial device setup, allowing LSL-compatible clients 
to require minimal or often no modifications to function 
with devices from different vendors. The API also offers 
the flexibility to use several of the most popular program-
ming languages, allowing it to be integrated into almost 
any piece of existing software with little effort.

LSL allows time-synchronized stream readouts from 
all networked devices, simplifying the experimental pro-
cess to merely starting the included recording devices 
and melding the received streams into an integrated XDF 
data record using the LSL LabRecorder application (or 
any equivalent of choice), eliminating the need to manage 

multiple data file formats and increasing the efficiency of 
either near-real time or post hoc data analysis. Moreover, 
LSL network protocol standardization facilitates the dis-
tribution of data measurement and processing across 
multiple computers without explicit network parameter 
configuration, increasing data acquisition versatility.

2.  SYSTEM OVERVIEW

LSL is a local network that runs on top of (or overlays) an 
Internet Protocol (IP) network running at the experiment 
site. LSL network peers can publish and subscribe to 
any number of streams of single- or multi-channel time-
series data (Fig. 1). LSL regularly quantifies clock offsets 
(OFS) and round-trip time (RTT) between peers to enable 
data stream synchronization. Multi-channel samples of 
any stream published on LSL contain the channel val-
ues (of flexible type) and a time stamp assigned by LSL 
or the LSL integration (“LSL App”) for the device. Peer 
access to LSL is set up using a dynamic library (liblsl) 
available for most POSIX-compatible platforms (IEEE 
SA Standards Board, 2018), including Windows, Linux, 
MacOS, Android, and iOS. The LSL API has been 
designed to “hide” the complexities of time synchroni-
zation and real-time network programming from both 
researchers and device manufacturers, while ensuring 
maximum network resiliency against dropped connec-
tions and data losses.

2.1.  LSL objectives

Chief goals governing LSL construction were: a) to simplify 
the discovery and selection of the published streams, b) to 
simplify publishing of active data streams to subscriber 
applications in near real-time, c) to supply sufficient meta-
data to allow for full interpretation of the transmitted time 
series, d) to solve the time-synchronization problem for 
concurrent data streams with an error low enough for most 
neurobehavioral research (i.e., at most msec-scale), e) to 
provide adequate out-of-the-box fault tolerance across a 
range of commonly-encountered failure scenarios (such 
as single-device failures, reconnects, restarts, intermittent 
network connectivity loss, and so forth), f) to establish a 
unified multimodal data representation, and g) to offer an 
API to access, transmit, and (when needed) store data 
from any set of data streams, regardless of modality.

Other possible objectives were explicitly not LSL design 
goals: a) building an online or post hoc data processing 
system (although such systems can easily be built on top 
of LSL), b) building an internet-scale and/or internet-facing 
data transport system, c) replacing or competing with 
existing data acquisition software (e.g., device drivers or 
applications), d) replacing or competing with non-signal 
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intra-process or inter-process message queuing systems, 
or e) solving needs far outside physiological or neurobe-
havioral research (e.g., high-energy physics).

2.2.  LSL design

The LSL software framework consists of three main com-
ponents: the LSL API and language wrappers, the LSL 
core library (liblsl), and the LSL protocols (see Fig. 2).

The LSL API is a unified interface to communicate 
with the LSL core library from external instruments and 
devices. To maximize compatibility and ensure a stable 
Application Binary Interface (ABI), LSL presents a C API 
in agreement with shared-library best practices (Drepper, 
2011), although the core is implemented in C++. Thanks 
to this stable ABI, support for other programming lan-
guages can be implemented with the C Foreign Function 
Interface (FFI), which enabled the creation of a wide 
range of wrappers for languages such as Java, C#, 
Python, Matlab, Rust, and several others. A header-only 
C++ API is also natively provided by the core library. 
These API wrappers provide the same metaphors, termi-

nology, and functionality that the core C/C++ API pro-
vides. Since its initial release, liblsl has remained within 
the 1.x series, and all versions in this range are designed 
to be interoperable; connection handshakes negotiate 
the highest mutually supported protocol version to ensure 
compatibility. The library follows semantic versioning 
standards for API compatibility within major releases, 
while protocol versioning is handled separately; currently 
supporting two protocol versions that enable communi-
cation between different liblsl versions, including poten-
tially decade-old software installations that remain critical 
in research environments.

Each existing API attempts to respect the idioms and 
standards of the language in which they are implemented. 
So, the Python API aims to be “Pythonic,” while the C API 
is an example of a “classical” C style, yet at the same 
time, all APIs cover an equivalent feature set. Developers 
can use the API to design executable programs to com-
municate with their peers on the network, publish data, 
and subscribe to streams from other peers.

A simple yet runnable example in Python that discov-
ers, subscribes to, and then reads from an EEG stream 

Fig. 1.  System overview. The Lab Streaming Layer (LSL) creates a network connecting data acquisition, storage, 
and processing devices overlaying the local network (LAN) on which they are streamed. LSL handles publishing and 
subscribing to data streams, clock synchronization, accounting for network delays, and jitter using the LSL dynamic library 
(liblsl). LSL outlets publish data streams to the network that LSL inlets can subscribe to. LabRecorder is a space-efficient 
and high-throughput LSL recording program that can supervise recording of streams from any number of LSL outlets. 
Clients on the network include device integrations (seen on the left-hand-side), single- or multi-stream visualization or real-
time processing components, and arbitrary stimulus presentation and response collection mechanisms.
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on the LSL network is given in the following listing (equiv-
alent examples are provided for all supported program-
ming languages):

from pylsl import StreamInlet, resolve_
stream

streams = resolve_stream(’type’, ’EEG’)
inlet = StreamInlet(streams[0])

while True:
   sample, timestamp = inlet.pull_sample()
   print (timestamp, sample)

A corresponding simple example that generates 8 
channels of random floating-point numbers and streams 
them to LSL at approximately 200  Hz, here written in 
C++, is shown below. For best interoperability it is recom-
mended to additionally specify meta-data such as chan-
nel labels, which is not shown here. Equivalent 
functionality is available for all other supported program-
ming languages.

#include <chrono>
#include <lsl_cpp.h>
#include <thread>

const int nchannels = 8;

int main(int argc, char *argv[]) {
  lsl::stream_info info(“MyStream”, “EEG”, 

nchannels, 200.0);
  lsl::stream_outlet outlet(info);

  float sample[nchannels];
  while (1) {

    for (int c = 0; c<nchannels; c++)
       sample[c]  =  ((rand() % 1000) / 

1000.0);
    outlet.push_sample(sample);
    std::this_thread::sleep_for(

       std::chrono::milliseconds(5));
  }
  return 0;

}

The LSL core library (liblsl) is written in modern C++ 
and manages features that LSL offers. Each peer needs 
to have a copy of the liblsl to communicate with other 
peers on the network. Our effort has been to maintain 
liblsl as a self-contained package to minimize its depen-
dencies on packages that are not shipped with the LSL 
source code. Therefore, users should be able to compile 
the library in case compiled binaries are not available on 
a given platform.

Internally, liblsl uses pugixml (Kapoulkine, n.d.) for 
XML and XPath processing, loguru (Delgan, n.d.) for log-
ging with configurable verbosity and log targets, and 
Boost ASIO (Kohlhoff, n.d.; Koranne, 2011) for portable 
high-performance asynchronous networking.

LSL Network Protocols. LSL internally implements 
five network protocols to allow peers to create and main-
tain outlets to publish data streams, inlets to subscribe to 
streams, and to stream information objects each carrying 
all the requisite metadata for a data stream. By protocols, 
we mean the steps and standards to establish outlets, 
inlets, and metadata transfers. The five protocols are 
titled (1) Discovery, (2) Subscription, (3) Stream transmis-
sion, (4) Metadata transmission, and (5) Time synchroni-
zation. Adherence to the protocols is guaranteed by the 
core library (liblsl).

2.2.1.  The discovery protocol

The first stage in establishing communication between 
inlets and outlets is stream discovery. An application may 
discover outlet peers by broadcasting query messages 

Fig. 2.  Lab Streaming Layer Design. LSL consists of 
three main components: 1) LSL language wrappers and 
API, 2) LSL core library (liblsl), and 3) LSL protocols. The 
LSL API is a unified interface enabling communication 
with the LSL core library from external instruments and 
devices. The API was originally composed in C/C++ 
and is wrapped in other languages. The LSL core library 
(liblsl) is written in C++ and implements all features that 
LSL offers. The LSL protocols are the set of steps and 
standards required to establish reliable communication 
and synchronization between peers.
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into the network via UDP broadcast and UDP multicast 
(RFC1112) (Deering, 1989) to user-configurable multicast 
groups and awaiting responses. The query message con-
tains an XPath 1.08 compliant query string that specifies 
some metadata properties of the stream of interest (e.g., 
type=”EEG”). The host of each published stream on the 
network will then respond to matching queries with a 
small response packet that contains the essential proper-
ties necessary for establishing a connection specific to 
the querying peer so that a single machine can stream 
data to multiple peers at once. These include the name, 
type, and unique identifier of the stream and are format-
ted as an XML string. Responses to identical queries are 
cached for efficiency.

For convenience, all of this happens ‘under the hood’ 
of a single LSL function call. The programmer of an LSL 
application need not be concerned with the details of 
interfacing with a network stack for this to work. Further-
more, queries can be transported over several network 
protocols, including UDP broadcast and multicast of var-
ious scopes, and can be done using IPv4 and/or IPv6. 
LSL will correctly choose the right communication tech-
nique so that the programmer can be agnostic of the 
underlying network protocols.

The same LSL query protocol is used to automatically 
reconnect to a peer should the connection be lost during 
a data transfer; for example, if a software or network 
computer crashes, or a change in network topology 
occurs. Connection recovery will be successful even if 
the peer’s IP address has changed. This provides sub-
stantially greater resilience than most protocols that can-
not recover from a change in IP addresses.

2.2.2.  The subscription protocol

After a desired active outlet object is discovered, the host 
application on the subscriber side will want to connect a 
stream inlet to the outlet. This process is called an LSL 
subscription, enacted by establishing a TCP connection 
to a network endpoint advertised in response to the dis-
covery query. A brief two-way protocol negotiation hand-
shake establishes this connection. The handshake 
resembles HTTP/1.1 GET and its response (Fielding 
et al., n.d.). The purpose of this handshake is to exchange 
several transmission parameters such as the protocol 
version, byte order, buffer sizes, support for floating-point 
subnormals, etc.

A mutually agreed-upon sequence of test-pattern data 
is also transmitted to confirm that both parties can sup-
port the same protocol. The metadata header (stream 

information object) is also transferred from the host (out-
let) to the client (inlet) to confirm that the endpoint does 
carry the requested data stream. Once this exchange is 
completed, the connection is formed, and time-series 
data will flow from the outlet to the inlet until the connec-
tion is terminated.

2.2.3.  The stream transmission protocol

LSL transmits time-series data as a byte stream split into 
packets by the underlying network layer. Samples in the 
time series may be marked for immediate transmission to 
enable use in real-time applications. This effectively indi-
cates a ‘flush’ operation wherein the marked sample(s) are 
to be transmitted as soon as the underlying network per-
mits. The byte stream is a sequence of encoded message 
frames. Every frame corresponds to one sample and 
includes a losslessly delta-compressed timestamp fol-
lowed by the sequence of data values (bytes) encoded 
according to the format agreed upon during the connec-
tion handshake. While the underlying protocol is sample-
oriented, the choice between immediate or deferred 
transmission allows users to send or receive time series 
either sample-by-sample or at the granularity of multi-
sample chunks, where either side can choose to use either 
protocol, using easy-to-use high-level functions (the above 
code listing shows sample-wise sending and receiving).

2.2.4.  The metadata transmission protocol

In addition to time-series data, a stream’s metadata must 
be transferred from peer to peer. This metadata plays the 
same role as a file header in a time-series recording and 
contains information such as the stream name, type, 
channel count, sampling rate, etc. The metadata needs 
only be transmitted once and is, thus, treated by LSL as 
‘out-of-band’ data. It is only transmitted on client request 
over a TCP connection. A simple connection handshake 
also precedes this transfer.

The metadata is plaintext and structured in accor-
dance with an attribute-free subset of XML and can be of 
any length. LSL does not prescribe the metadata struc-
ture, but for interoperability, it is strongly recommended 
to adhere to a specification of content types (modalities 
such as EEG, Audio, Gaze, and so forth) and content 
type-specific nomenclature of XML fields. The type-
specific nomenclature was co-developed with the XDF 
(extensible data format) project and is available online 
from the XDF GitHub Wiki. Since this metadata specifica-
tion is plaintext XML, applications may extend and aug-
ment this metadata in any way that is suitable for a given 
data stream without breaking compatibility or deviating 
when necessary.8  https://www​.w3​.org​/TR​/1999​/REC​-xpath​-19991116/

https://www.w3.org/TR/1999/REC-xpath-19991116/
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2.2.5.  Time synchronization protocol

A common use case of LSL is streaming multimodal time 
series data from multiple peers to a separate peer that 
subscribes to (monitors and/or records) the multimodal 
data. LSL’s timestamping function returns the time of the 
most steady (i.e., monotonically increasing) high-precision 
computer clock available that has a minimum resolution of 
1 msec or better (typically the machine uptime). The time 
offset between multiple computers’ clocks, as well as their 
relative drift, is continually measured and accounted for by 
LSL when synchronization information is utilized. When an 
inlet peer wishes to synchronize its clock with the respec-
tive outlet peer, a structured packet exchange is initiated 
following the basic NTP model. Since clocks need to be 
periodically re-synchronized due to the drift, this process 
will be repeated regularly (e.g., by default, every 5 s). LSL 
employs the clock filter algorithm of the Network Time 
Protocol (NTP) (Martin et al., 2010) to account for random 
spikes in network transmission delay. This process uses 
multiple packet exchanges to estimate the clock offset 
(OFS) and round-trip times (RTT) between peers in rapid 
succession (e.g., ten times across 200 ms), yielding a set 
of OFSs and RTTs from which the one with the lowest RTT 
is retained.

Each packet exchange attempt for clock synchroniza-
tion consists of a packet sent from the initiating peer to 
the receiver. This carries the local timestamp of the initi-
ating peer and is noted as t0. The receiver then responds 
with two more timestamps, the receiving time of the orig-
inal packet t1, and the time of resend t2. Upon receipt of 
this packet by the initiating peer, a final timestamp t3 is 
taken. Then,

	 RTT = (t3 − t0 ) − (t2 − t1) 	 (1)

	 OFS = t1 − t0( ) + t2 − t3( )( ) 2 	 (2)

Therefore, RTT is the duration of the entire round trip 
minus the time spent on the receiving peer, and OFS is 
the averaged clock offset between the peers with sym-
metric network transmission delays canceled out. This 
measurement is a minimum-noise realization (because 
we choose the OFS at the minimum RTT) of the unbiased 
clock offset between the two peers. There can be a trans-
mission time asymmetry between the forward and back-
ward network path (e.g., due to driver implementation 
details), but the residual error after clock filtering is upper-
bounded by the lowest delay of a machine’s network 
implementation and is therefore assumed to be well 
under 1 ms with most network hardware.

Using this time-varying measurement, the receiving 
side of LSL then constructs a model of the observed time 

stamps tobs as a function of the time tactual when the on-
device measurement actually occurred (ignoring relativis-
tic effects), an optionally smoothed estimate of the clock 
offset OFS, a device-specific constant offset τ, and a 
zero-mean noise term ε :

	 tobs = tactual + τ +OFS + ε 	 (3)

Using this formula, it is possible to recover tactual for 
regularly sampled time series either using a recursive 
least-squares estimator in real time or linear regression in 
post-hoc data analysis, both of which are supported by 
LSL for the former and by XDF implementations for the 
latter.

2.3.  The extensible data format (XDF)

The Extensible Data Format (XDF) is an open-source and 
general-purpose natively multi-modal container format 
for multichannel time series data with extensive associ-
ated metadata. XDF is tailored towards biosignal data 
such as ExG, GSR, and MEG, but it can also handle data 
with a high sampling rate (like audio) or data with a high 
number of channels (like fMRI or raw video). In general, 
every data stream collected by the LabRecorder, along 
with metadata and synchronization information is 
recorded into a single XDF file. Crucially, XDF follows the 
policy of recording all timing-related ground truth “as it 
happened”, which allows for post-hoc analysis and 
recovery of data in case of misbehaving devices or inter-
mittent failures during a recording. A result of this choice 
is that, while XDF importers present a simple interface 
similar to that of many other file importers, XDF files rep-
resent an exact record of what occurred during an exper-
iment, which can at times be complex, including a device 
disappearing and later (e.g., after an unplanned battery 
swap) reappearing.

In case of a high-bandwidth time series that may not 
be transferable over the network (such as uncompressed 
video), each frame of the stream may be timestamped 
and stored in the local machine (outlet) while the time-
stamp information and the metadata would be sent over 
LSL to the inlet machine and would be added to the XDF 
files. Another scenario in which this may be favorable is 
when video data falls under stricter privacy and regula-
tory requirements as personally identifiable information 
(PII) than most other information that can be recorded 
into an XDF file.

The XDF metadata is stored as XML content in an effi-
cient binary chunk-oriented container file format, and the 
recognized metadata parameters are available at the XDF 
GitHub repository. XDF predefines an extensible set of 
content types (e.g., EEG, Audio, NIRS, and so forth) and 
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associated metadata specifications, following a light-
weight open process by which this specification is 
extended. This allows a single file to maintain compre-
hensive yet extensible modality-specific metadata on par 
with most unimodal biosignal file formats. XDF tools are 
available for download via the XDF GitHub page. A 
derived ANSI standard (ANSI/CTA-2060-2017) specifying 
a file format for a consumer-grade variant of XDF has 
since been published (ANSI, 2017).

2.4.  Failure resilience

Preventing data loss is a major objective during data col-
lection, especially in multimodal data acquisition where 
the probability of hardware issues grows linearly with the 
number of devices involved in a given data collection 
setup. LSL is equipped with a number of mechanisms for 
preventing catastrophic crashes and loss of data to 
ensure smooth operation, even in the event of computer 
crashes and lost network connections. To prevent data 
loss, LSL outlet and inlet objects can use variable-size 
buffers that have a configurable, arbitrarily large capacity. 
So, in case an inlet temporarily could not receive data 
from an outlet, the data can be buffered until the inlet can 
handle the transfer. The upper limit of all of this is the 
computer resources and network throughput.

In the event of an outlet dropping out, any inlets con-
nected to the outlet will attempt to reconnect. An event 
will trigger within the inlet to periodically search for the 
outlet and attempt to reconnect as soon as the outlet is 
rediscovered. Since the outlet’s information object can 
be created with a unique ID, this discovery will happen 
automatically even if the outlet is recreated on a different 
computer in the network and with a different IP address.

If an outlet drops out while an inlet is recording data, 
LSL can tolerate a discontinuity in the clock offset for the 
dropped stream after the rediscovery of the outlet, so 
that the outlet timestamp is consistent with the time-
stamp information prior to the dropout. This behavior is 
agnostic to the crash type and could resume recording of 
the discovered outlet even if the disconnection is a result 
of changing network topology, a computer crash and 
restart, or hardware failure like a dead battery.

Since these recovery processes happen automatically, 
the LSL user is shielded from having to cope with any-
thing other than potentially a gap in a recorded data 
stream in the event that a device was intermittently not 
recording data. XDF tools typically come with built-in 
support for the detection and correct handling of such 
data gaps. These collective built-in efforts to recover 
connections between peers realize LSL’s failure resil-
ience. While our validation tests focus on ideal condi-
tions, LSL has been stress-tested under various failure 

scenarios—including device restarts, network conges-
tion, and clock drift—to verify its resilience. Built-in 
mechanisms such as automatic reconnection, time offset 
renegotiation, and buffering help maintain data continuity 
under typical disruptions.

2.5.  Software stack

LSL includes an ecosystem of applications to publish and 
subscribe to data streams, APIs in various languages built 
around the core dynamic library (liblsl), an extensible data 
recording format, XDF, post-hoc analysis for loading LSL 
synchronization performance, and tools for performing 
offline time-synchronization. This ecosystem can be 
accessed via the landing page and GitHub organization 
and meta-repository. LSL also offers rich and open-source 
documentation maintained by its developer community, 
available at https://labstreaminglayer​.readthedocs​.io.

However, it is far beyond the scope of this article to do 
justice to the greater LSL software ecosystem, which 
includes over a hundred compatible client applications, 
some open source and others vendor-native. Many appli-
cations in this greater ecosystem are hosted under an 
umbrella GitHub organization, while many others are 
vendor-provided data acquisition software with built-in 
LSL support, and an unknown number of further LSL cli-
ents can be found via internet searches. While this article 
focuses on acquisition devices, it is important to note 
that the LSL ecosystem also includes a robust collection 
of compatible stimulus presentation software, including 
most major programs used for this purpose, which are 
indispensable for scientific experimentation. Further-
more, the ecosystem includes software for real-time pro-
cessing of collected data (for example, for brain-computer 
interface or neurofeedback applications), visualization, 
troubleshooting, experiment management, and various 
other tasks.

2.6.  Continued development and maintenance

Researchers and programmers from both academic and 
commercial sectors all over the world have contributed to 
the LSL source code and APIs. However, changes to the 
core library (usually bug fixes) are made very infrequently 
and with ultimate caution. Backward compatibility with 
existing applications is maintained at all costs. The bug 
rate is very low (less than one discovered every 6 months) 
and, so far, all bugs that were discovered were non-critical. 
Some bugs seen so far include a few memory leaks and 
typing errors in printing metadata and error messages. We 
have not found any bug affecting the proper operation of 
sending and receiving data (the primary LSL objective) in 
the past several years. Bugs in the LSL application eco-

https://labstreaminglayer.readthedocs.io
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system and APIs are more common, but given the stability 
and reliability of the core library and the simplicity of its 
interface, these bugs are relatively trivial to identify and 
cannot affect (i.e., crash) other LSL inlets and outlets—one 
of the less obvious benefits of a decentralized design.

To maintain stability, unit tests covering a wide array of 
both internal and API functions are run on all computing 
platforms for every change committed to the source 
code. In addition, the library is periodically stress-tested 
with hundreds of streams, randomized disconnects, 
shutdowns, reconnects, and randomized stream param-
eters. During such extreme network stress tests, some 
consumer-grade network equipment has been found to 
be less reliable (i.e., crashing) than the LSL implementa-
tion itself. Our dedicated benchmarks ensure that 
changes in operating systems and libraries do not impair 
the data exchange and synchronization performance. In 
addition, downstream libraries, such as mne-lsl, also fol-
low continuous integration and unit testing best prac-
tices, providing additional implicit validation and stress 
testing of the LSL ecosystem.

3.  TESTING AND RESULTS

LSL has been extensively tested and validated by the 
biosignal research community in several studies (Blum 
et al., 2021; Bustamante et al., 2021; Chuang et al., 2021; 
Iwama et al., 2022; Kang & Wallraven, 2023; Levitt et al., 
2022; Merino-Monge et  al., 2020; Weber et  al., 2021). 
Here, we provide some data concerning LSL’s perfor-
mance on a local network (i.e., all LSL inlets and outlets 

running on a single machine), on a distributed network, 
and on a local network collecting data from multiple 
instruments. We provide a simple yet effective recipe to 
determine, for a given data instrument, the total delay of 
the data path for a given instrument, which is a sum of 
the internal hardware delay (e.g., on-device buffers), 
wireless transmission latency and operating system, 
device driver, and driver access latency, which we term in 
the following the “setup offset” τ.

Using a scientific-grade analog-to-digital/digital-to-
analog I/O device (National Instruments Data Acquisition 
Box, NI-Daq, Austin, TX), we created a periodic pulse sig-
nal (Fig. 3). We used the same NI-Daq to receive the same 
signal (DataIn), and create an DataIn marker when the 
pulse was going high. To create the DataIn marker, we 
chose the time the recorded signal reaches halfway to its 
maximum amplitude. We also recorded the pulse event 
directly from NI-DAQ using LSL.

At the same time, we used another scientific-grade 
signal recording device (BioSemi Active-II, BioSemi B.V., 
Amsterdam, the Netherlands) and read the same pulse 
signal as an LSL stream. We used a similar threshold for 
the BioSemi-recorded pulse signal (i.e., halfway to maxi-
mum amplitude, BioSemi Marker), so that we could add 
time markers when the pulse signal went high. We 
recorded the BioSemi stream and the LSL marker stream 
using LabRecorder, the native LSL recording program.

Finally, we compared the timestamps of the marker 
stream and the ‘high’ points of the BioSemi stream. The 
NI-Daq data input stream was sampled at 10 kHz, and 
the BioSemi data stream was sampled at 2048 Hz.

Fig. 3.  Synchronization performance setup. The setup consists of a National Instruments Data Acquisition Box (NI-Daq) 
that generates a periodic pulse signal (DataOut) and receives the same signal (DataIn). The same NI-Daq is used to  
create an LSL marker when the pulse is going high. At the same time, a BioSemi Active-II receives the same pulse signal 
as an LSL stream. The BioSemi stream and the marker stream are recorded using LabRecorder, the native LSL  
recording program. The LSL marker stream is used to calculate the synchronization accuracy of the BioSemi stream.  
(A) The local setup is using a single computer to connect to the NI-Daq and BioSemi devices and record the streams 
using LSL LabRecorder. (B) The network setup uses separate computers to connect to the NI-Daq, BioSemi, and the LSL 
LabRecorder.
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We expected to observe a constant offset (setup offset) 
between the two markers (i.e., DataIn Marker and BioSemi 
Marker) due to the setup and network topology, plus some 
jitter. We ran the NI-Daq controller, BioSemi, and 
LabRecorder on (1) a single machine (Intel Windows 7) to 
test the LSL’s local performance and (2) used separate 
network-attached machines for each of the NI-Daq control-
ler, BioSemi, and LabRecorder (Intel Windows 7 for NI-Daq 
and Intel Windows 10 for each BioSemi and LabRecorder) 
to test LSL’s network performance. We analyzed the differ-
ence of 1500 high-points generated by NI-Daq and BioSemi 
systems to quantify jitter and setup offset.

Here, we purposefully avoided using state-of-the-art 
machines in order to test LSL performance on a more 
typical PC data acquisition setup.

3.1.  Instrument latency in a local LSL setup

The results showed a 5-ms lead time between the time a 
DataIn Marker was issued, and the pulse events satisfied 

our defined threshold (Fig.  4A). This is well below the 
100-ms resolution of the NI-Daq reader, so we consid-
ered this lead time negligible. Comparing the BioSemi 
Marker and the DataIn Marker latencies indicated a 
12.20 ms setup offset between the two markers (Fig. 4B). 
The jitter of this offset, that is the standard deviation of 
the lag (see Fig.  4B) was 156 ms, below the ˜500-ms 
Biosemi time resolution. Thus, the two streams could be 
aligned by removing this (pre-measured) device setup 
offset, and time jitter should not affect this alignment.

3.2.  Instrument latency in a networked LSL setup

To assess the setup offset of the instrument (in this exam-
ple the BioSemi amplifier) in a distributed network, we 
separated the program controlling the NI-Daq (sending 
the DataIn Marker and storing pulse events), the program 
sending the BioSemi stream, and LabRecorder to 
network-attached computers. The results showed an 
even smaller setup offset between the DataIn Marker and 

Fig. 4.  Single-machine (local) and multi-machine synchronization performance. (A) The Ni-DAQ outputs a pulse event to 
the computer as an LSL inlet every time a pulse signal is generated. Am Ni-DAQ input records the output signal and sends 
it to another LSL inlet. The DataIn Marker is created from this input after as the pulse is detected. (B) DataIn and BioSemi 
are recorded the same signal on the same computer. The DataIn and BioSemi Markers indicate pulse detection by each 
instrument, respectively. (C) DataIn and BioSemi are recorded the same signal but on two separate machines attached by 
a wired network. Computation overhead of recording multiple signals on a local machine may have attributed to the larger 
offset on the local setup compared to the network-attached setup.
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the BioSemi Marker than the results observed in the 
single-machine LSL performance test (here, networked 
offset: 6.26 ms, vs. local offset: 12.20 ms, (Fig. 4C)). The 
offset jitter (presented as the standard deviation of the 
offset, (Fig. 4C)) was 145 ms, similar to the results from 
the local network experiment.

This offset decrease might have arisen from the sep-
aration, here, of the BioSemi and NI-Daq machines and 
potentially by faster performance of the BioSemi appli-
cation and the associated driver running on Windows 
10. However, the total setup delay for a given instru-
ment is frequently dominated by device transmission 
delays, including large on-device buffer sizes that are 
only periodically transmitted, wireless (e.g., Bluetooth) 
protocol transmission latencies, and may add up to 
several 10 s of milliseconds. Such discrepancies under-
pin the importance of testing setup offset (including 
device throughput) for all devices and configurations 
before recording experiment data. Setup offsets can be 
manually added to the metadata while the other poten-
tial ad-hoc offsets caused by the network delay or 
asynchrony would be recorded into the XDF automati-
cally. Both types of offsets will be addressed upon 
importing the XDF files with the help of the LSL Time 
synchronization protocol (section  2.2.5) and using the 

load_xdf function (https://github​.com​/xdf​-modules​
/xdf​-Matlab​/blob​/master​/load​_xdf​.m).

3.3.  Multi-instrument synchronization

To explore the synchronization performance of multi-
modal recordings on a single PC, a typical research use-
case scenario, we measured the jitter between 
professional-grade acquisition devices (Noraxon Ultium 
EMG combined with a Labjack T7-pro, and Ant Neuro 
EEG) as well as a consumer-grade webcam (Logitech 
C920S HD Pro Webcam) using a standard laptop (Lenovo 
X1 Carbon Gen 7). To avoid potential delays due to 
hardware-related TTL triggering, we created two syn-
chronized square wave analog signals, appropriately 
scaled and conditioned according to device specifica-
tions, and injected them directly into EEG and EMG elec-
trodes respectively. These bipolar signals were then 
acquired and streamed over the local network as physio-
logical data. We simultaneously generated a blinking LED 
via an Arduino Zero device, captured it via the webcam, 
and streamed it via LSL over the network along with the 
EEG and EMG data (Fig. 5A).

The experimental setup consisted of three data 
streams: EEG sampled at approximately 2000 Hz, EMG 

Fig. 5.  Multi-device synchronization on a local machine. (A) The trigger signal was recorded by an EEG, EMG, and a 
webcam recording device. Each device transmitted their recording to a single machine. Red dashed boxes indicate zoomed-
in looks to the data. (B) EEG signal was tranmistted at each sample, while EMG signal was transmitted by about 20 ms 
chunks. (C) After correcting for the signal offset and jitter, the difference between the EEG and EMG signals was <0.5 ms.

https://github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m
https://github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m
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sampled at similar rates, and webcam data captured at 
standard 30 frames per second. All streams were 
recorded using LabRecorder software in XDF format for 
10 min. Data were analyzed using MATLAB (R2024b) and 
imported using both default parameters (HandleJitter 
= true) and with jitter handling disabled (HandleJit-
ter = false). The timing of rising fronts of the EEG and 
EMG square waves and LED activation times were com-
puted, subtracted pairwise, and centered to the mean to 
create Camera vs. EEG, Camera vs. EMG, and EEG vs. 
EMG jitter distributions.

We observed distinct transmission characteristics 
between different device types (Fig. 5B). The EEG device 
demonstrated single-sample transmission with minimal 
jitter, while the EMG device used chunk-based transmis-
sion resulting in characteristic periodic timing patterns. 
The webcam showed more irregular timing behavior typ-
ical of consumer-grade devices with variable frame rates 
Fig. 6A).

The synchronization analysis revealed that sub-
millisecond jitter is achievable on standard consumer-
grade laptops using default LSL parameters 
(HandleJitter = true) when professional hardware 
with “uniform” sampling rates is employed (Fig. 5). This 
was demonstrated for both EEG and EMG devices 
tested. The jitter-corrected latency between EEG and 
EMG streams showed a tight distribution centered around 
zero with standard deviation of approximately 0.5  ms, 
indicating excellent synchronization performance.

However, synchronization performance varied signifi-
cantly with device type and parameter settings. Disabling 
jitter handling (HandleJitter = false) increased jitter 

by at least one order of magnitude for professional-grade 
devices, as shown in the EEG-EMG comparison where 
the uncorrected jitter distribution was substantially 
broader. Interestingly, for consumer-grade hardware such 
as a webcam, disabling jitter handling sometimes 
improved synchronization. This occurs because highly 
irregular sampling rates violate the Gaussian delay distri-
bution assumptions underlying the jitter correction algo-
rithm (Fig. 6).

Our results demonstrate that LSL’s built-in jitter cor-
rection is highly effective for professional-grade devices 
with consistent sampling rates, achieving sub-millisecond 
synchronization accuracy. However, users should care-
fully evaluate their specific hardware configurations, as 
delays between streams can vary over time and differ 
between hardware setups. Factors such as varying CPU 
clock speeds due to thermal throttling, operating system 
prioritization due to workload changes, and hardware-
level energy saving features can all affect jitter and delays. 
Therefore, users are encouraged to test their hardware 
configurations before critical acquisitions and optimize 
data analysis pipelines according to their setup’s charac-
teristics.

4.  PITFALLS AND TWEAKS

LSL’s timing can be influenced by network congestion, 
device-specific buffering, and clock-drift between hosts. 
Also, LSL cannot account for internal hardware delays 
and researchers must determine this delay at least once 
every time their setup configuration (including adding or 
removing instruments or netwrok clients, updating driv-

Fig. 6.  Effect of jitter correction for large jitter consumer-grade instruments. (A) Time difference between samples 
for camera (top) and EEG (bottom) streams, showing irregular timing behavior for consumer-grade devices versus 
professional-grade equipment. Red dashed boxes indicate zoomed-in looks to the data. (B) Latency distributions between 
EEG and camera streams before (left) and after (right) jitter correction. Unlike professional-grade device pairs, consumer-
grade cameras may show better synchronization with jitter correction disabled, as irregular sampling rates violate 
Gaussian delay assumptions of the correction algorithm.
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ers or operating system) changes. This section gathers 
known challenges and hands-on remedies so that 
researchers can (i) anticipate sources of error before data 
collection and (ii) apply configuration tweaks or offline 
corrections to retain sub-millisecond alignment.

4.1.  Transmission latency

Transmitting the timestamped data through the LSL net-
work also poses some latency between the outlet and 
inlets. It is important to reemphasize that data is time-
stamped by the outlet immediately upon receipt from the 
data source (e.g., device), and therefore, data transmis-
sion latency over the network generally does not intro-
duce errors in timestamps. However, such delays may 
pose some challenges for real-time applications, which 
want to responsd to received data in a timely manner.

4.2.  Determining the setup offset

As we demonstrated above, adjusting recording times for 
setup offset is imperative for successful multimodal data 
acquisition and synchronization. Modifying the setup 
configuration (e.g., moving an outlet from one machine to 
another) may change the setup offset. Any change in net-
work configurations or updates to their software, drivers, 
or operating systems should prompt a recheck. Here, we 
present a simple yet effective procedure to determine 
setup offset for every instrument, a process similar to that 
described above in section 3.1.

To determine the setup offset of an instrument, we 
suggest using a microcontroller unit (e.g., an Arduino) 
board to send TTL pulses to both the LSL network and to 
the instrument as a data input (Fig. 7). Publishing the TTL 
pulse as a DataIn Marker can be accomplished through a 
control software that registers the TTL pulses, or can be 
directly published by the MCU, since the LSL developer 
community has provided support for running liblsl on 
some MCUs. The data from the instrument should then 
be streamed to the LSL network. Both the DataIn Marker 
and the instrument data should be recorded using 
LabRecorder or an equivalent recording software. The 
setup should be chosen in a way that most exactly rep-
resents the experiment configuration. After reconstruct-
ing a marker that corresponds to the TTL pulses from the 
instrument data (instrument marker, similar to the BioSemi 
Marker in section 3.1), the average offset between time-
stamps of the DataIn markers and the instrument marker 
is the setup offset.

We should note that setup offset can be either positive 
or negative. A positive offset means that the instrument 
marker occurs after the DataIn marker, indicating an 
instrument lag in capturing and transmitting the data to 

the recorder. A negative offset means the instrument 
marker occurs before the DataIn marker; this may hap-
pen for sensory triggers (e.g., auditory pulses) where the 
instrument marker is the time that the trigger pulse is sent 
to the auditory transducer (e.g., a loudspeaker), while the 
DataIn marker indicates the time at which the transducer 
actually produces the pulse.

A successful setup with sub-millisecond internal delay 
using an affordable MCU board (Arduino) has been 
benchmarked and could be easily replicated from 
(Appelhoff & Stenner, 2021). A commercial solution using 
dedicated hardware for determining setup offsets is also 
available from Neurobehavioral Systems, Inc. We again 
strongly encourage researchers to use these instruments 
to determine the setup offset and also to verify LSL’s 
determination of network delays.

4.3.  Common device and network issues

LSL can address some known hardware failures or net-
work connectivity issues. Sometimes, a hardware device 
may exhibit a significant change in sampling rate (e.g., in 
our experience, a webcam that frequently switches 
between 30 and 60 frames per second) or suffer from high 
and variable packet loss (e.g., a Bluetooth device that 
goes in and out of operational range). In these cases, the 
load_xdf’s attempt to linearly smooth the timestamps 
will significantly (even catastrophically) distort the data. 
This can be checked by comparing the effective sampling 
rate as quantified by load_xdf (as the number of sam-
ples divided by the recording length) with the sampling 
rate reported in the device metadata. If these two sam-

Fig. 7.  Setup offset determination algorithm. The setup 
offset can be determined by sending a TTL pulse from 
a microcontroller board to the LSL network and to the 
instrument. The instrument data would be streamed to LSL, 
and the LSL marker would be recorded using LabRecorder. 
The setup offset would be the average offset between the 
DataIn marker and the instrument marker.
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pling rates are not close to each other, we suggest calling 
load_xdf with the flag ‘HandleJitterRemoval’ set 
to false. Oftentimes it is possible to recover such record-
ings with some manual effort thanks to XDF’s policy to 
record all underlying ground-truth timing data.

A similar issue can arise by using LSL through a wire-
less local area network (WLAN). If there are multiple 
streams on a heavily utilized WLAN, the clock offset 
packet exchange can sometimes overload the network 
and cause gaps in the data. In this case, it may be appro-
priate to optimize the LSL configuration file for WLAN. 
The recommended settings for WLANs are:

[tuning]
TimeProbeMaxRTT = 0.100
TimeProbeInterval = 0.010
TimeProbeCount = 10
TimeUpdateInterval = 0.25
MulticastMinRTT = 1.0
MulticastMaxRTT = 30

This text can be placed in a file called lsl_api.cfg. 
If this file is in the same folder as the device’s LSL appli-
cation, these settings would only be applied to the device. 
If the file is in ~/lsl_api/, the changes would be 
applied to the user globally. If the file is placed in an /etc 
folder (C:\etc on Windows), the tweaks will be global 
for all users.

Since applications can supply their own time stamps 
upon submitting a sample to LSL, potentially outside of the 
control of the user, it is possible to selectively ignore such 
time stamps via the user-facing configuration file. This can 
be necessary when a third-party application uses non-
standard time stamps (e.g., from an alternative clock source 
such as on-device clocks). Since LSL tracks time offset 
between host machines and not between arbitrary 
application-chosen clocks, in such cases the recorded data 
would appear mutually unsynchronized. To rectify this, the 
user can put the following lines into their lsl_api.cfg:

[tuning]
ForceDefaultTimestamps = 1

4.4.  Use in neurostimulation

A natural extension of LSL’s capabilities is its integration 
with stimulation paradigms such as transcranial mag-
netic stimulation (TMS), transcranial electrical stimulation 
(tES), transcranial ultrasound stimulation (TUS), and oth-
ers. LSL can facilitate such setups by recording stimula-
tion onset event markers or the stimulus trains themselves 
at their native resolution, which allows for post-hoc cor-
relation analysis with respect to neural data. LSL’s ability 

to access neural data with low transmission delay also 
facilitates time-synchronized paradigms, including 
phase-locked or neural burst triggered neurostimulation 
(Shirinpour et al., 2020).

Integration approaches generally fall into hardware-
based solutions (manufacturer-integrated systems9 or 
third-party bridges) and software-based coordination 
through frameworks, and both solutions can benefit from 
implementing LSL as their biosignal and trigger synchro-
nization framework. Recent comparative studies demon-
strate that while hardware-based synchronization 
achieves superior timing precision, software-based LSL 
approaches offer greater experimental flexibility for multi-
device integration (Miziara et  al., 2025). Advanced 
closed-loop systems now achieve sub-millisecond preci-
sion through novel synchronization methods (Kahilakoski 
et al., 2025), indicating the field’s rapid evolution toward 
sophisticated real-time paradigms.

When implementing such paradigms, it is important to 
assess timing requirements and measure both timing error 
and transmission latency of the envisioned LSL setup. 
When participant safety considerations arise from timing 
imperfections (e.g., network latency spikes from wireless 
connections), researchers should consider acquiring data 
directly from hardware to drive closed-loop stimulus gen-
eration, avoiding network links along the signal path. LSL 
can facilitate development of such tailored setups through 
its broad suite of open-source device integrations, which 
can be repurposed to build direct data paths with mini-
mum latency. Since many devices allow only single-client 
access, the same program can optionally generate LSL 
streams for recording purposes, as submitting data to LSL 
outlets is non-blocking and completes within microsec-
onds with low jitter.

We view this as an important area for future develop-
ment, and invite and encourage collaboration with 
researchers working on concurrent stimulation-recording 
setups to extend LSL’s utility and safety in neuromodula-
tion research.

5.  SUMMARY AND CONCLUSION

The Lab Streaming Layer is a now well-established, 
reliable, and easy-to-use multimodal signal acquisition, 
transmission, and recording platform tuned for syn-
chronously recording multimodal brain and behavioral 
data. Often, using LSL with a given device can be as 
simple as enabling LSL support in a vendor-provided 
data acquisition software, if supported, or using one of 
the existing open-source integrations for the device, 

9  e.g., Magstim-EGI integrated EEG+TMS systems or MxN-Pro featuring 
LSL.
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and recording the data on the same or another machine 
with the LabRecorder or another LSL-compatible 
recording tool. However, LSL also scales to complex 
setups involving multiple machines and several dozen 
acquisition devices or data streams. In one multi-
person, multiple touchscreen simulation (C. Kothe 
et al., 2018), we successfully used LSL to record from 
over 40 LSL data streams10 in recording sessions last-
ing multiple hours.

Recent benchmarks have demonstrated that LSL 
achieves sub-millisecond synchronization accuracy 
(Blum et  al., 2021; Chuang et  al., 2021; Iwama et  al., 
2022), which is on par with or surpasses the timing pre-
cision of most existing software-based multimodal 
acquisition frameworks used in neuroscience. For exam-
ple, BRAND reported up to 0.5  ms in its “inter-node” 
communication, that is, prior to running additional pro-
cessing or feature extraction pipelines (Ali et al., 2023). 
The Falcon framework also reported <1 ms latency for 
Neuralynx hardware, but identified that the latency can 
increase to multiple milliseconds for long recordings 
(Ciliberti & Kloosterman, 2017). Since LSL periodically 
quantifies the clock offsets and round-trip times between 
streams, its synchronization accuracy is not affected 
with the recording length. Our exemplar tests support 
the excellent sub-millisecond accuracy of the LSL time-
stamps. As our tests also showed, distributing the com-
putational load of processing multiple streams across 
separate network-attached machines can at times out-
perform the setup offset (and latency) achieved by cap-
turing all data streams on a single, perhaps heavily 
loaded, machine, which is made trivial thanks to LSL’s 
ability to seamlessly discover streams across the net-
work without additional configuration. For users requir-
ing hardware-level synchronization or TTL integration, 
the commercial LabStreamer device from Neurobehav-
ioral Systems (see section 4.2) provides a dedicated 
plug-and-play solution tightly integrated with LSL.

LSL as a purely software-based approach has an 
inherent limitation when no hardware triggering mecha-
nisms are used, which is that LSL as a network is not 
aware of any latency occurring within the acquisition 
device or in the device drivers before data reaches the 
LSL application for the device. While LSL integrations 
can make reasonable assumptions, and some do, any 
residual offset in this latency, which typically amounts to 
a few 10s of milliseconds, should be ascertained prior to 
conducting a study, ideally through testing using the 
actual devices and parameter settings to be used during 

subsequent recordings. A similar limitation applies to 
event marker time stamps pertaining to button presses or 
on-screen presentation, where, again, it is recommended 
to measure the input and/or display latency using off-the-
shelf tools such as photodiodes or high frame rate cam-
eras. Lastly, when the consistency of the device sampling 
rate itself and/or the stability of its setup offset cannot be 
trusted, it may be necessary to implement a hardware-
based data timing device to monitor the process at least 
for the affected device(s). Therefore, while LSL can 
recover lost connections and compensate for offsets and 
jitter, an appropriate initial setup of the instruments and 
measuring setup offset are imperative for an optimally 
synchronized multimodal recording.

While LSL accommodates a relatively large buffer to 
minimize data loss in case of a connection drop or sub-
par network speed, given a long enough (e.g., a few min-
utes) network disconnection, the buffer may eventually 
run out with the resulting loss of data. Similarly, LSL data 
throughput is limited by network and computer capacity. 
While many data streams can be easily transferred at 
multiple KHz rates, some data streams, such as high-
definition video, may saturate the bandwidth. In such a 
case, using lightweight compression before broadcasting 
the stream or storing the timestamped data on the local 
machine and only streaming the timestamps through LSL 
may resolve this issue.

A large ecosystem, transparent codebase and devel-
opment, zero-configuration, excellent latency manage-
ment, and reliability have made LSL a go-to solution for 
synchronized multimodal quantification of brain and 
behavior. Since its introduction in 2012, LSL has been 
cited over 2300 times, with citations accelerating in 
recent years, reflecting its growing adoption across the 
scientific community. Researchers can enjoy LSL with 
minimal and one-time initial setup and be sure that LSL 
will stream and store their multimodal data streams accu-
rately and reliably. Finally, LSL development thrives on an 
open and welcoming community of enthusiasts. Anyone 
can join this effort via LSL’s community hubs.

DATA AND CODE AVAILABILITY

The Lab Streaming Layer (LSL) is free, open-source 
software maintained by dedicated volunteers. The core 
library and related packages are available at https://
github​.com​/labstreaminglayer, with the core reposito-
ries available from the Swartz Center for Computational 
Neuroscience (SCCN) GitHub: meta-package and core 
library. Additional resources, documentation, and a list 
of compatible devices can be found at https://lab-
streaminglayer​.org. The Extensible Data Format (XDF), 
used for storing LSL data, is also freely available, with 

10  Two concurrent subjects, each with instruments including a 267-channel 
BioSemi, microphone, force plate, eye-tracking, three cameras, motion cap-
ture, and event marker streams.

https://github.com/labstreaminglayer
https://github.com/labstreaminglayer
https://labstreaminglayer.org
https://labstreaminglayer.org
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tools and specifications accessible at https://github​
.com​/sccn​/xdf.
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