
The Lab Streaming Layer for Synchronized Multimodal Recording
Christian Kothe1, Seyed Yahya Shirazi2, Tristan Stenner3, David Medine4, Chadwick Boulay5,
Matthew I. Grivich6, Tim Mullen1, Arnaud Delorme2, and Scott Makeig2

1Intheon Labs, San Diego, CA, United States
2Swartz Center for Computational Neuroscience, University of California San Diego, La Jolla, CA, United States
3Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
4Diademics Pty Ltd, Melbourne, Australia
5Ottawa Hospital Research Institute, Ottawa, Canada
6Neurobehavioral Systems, Berkeley, CA, United States

Abstract—Accurately recording the interactions of humans or other organisms with their environment or other agents
requires synchronized data access via multiple instruments, often running independently using different clocks. Active,
hardware-mediated solutions are often infeasible or prohibitively costly to build and run across arbitrary collections of
input systems. The Lab Streaming Layer (LSL) offers a software-based approach to synchronizing data streams based on
per-sample time stamps and time synchronization across a common LAN. Built from the ground up for neurophysiological
applications and designed for reliability, LSL offers zero-configuration functionality and accounts for network delays and
jitters, making connection recovery, offset correction, and jitter compensation possible. These features ensure precise,
continuous data recording, even in the face of interruptions. The LSL ecosystem has grown to support over 150 data
acquisition device classes as of Feb 2024, and establishes interoperability with and among client software written in
several programming languages, including C/C++, Python, MATLAB, Java, C#, JavaScript, Rust, and Julia. The resilience
and versatility of LSL have made it a major data synchronization platform for multimodal human neurobehavioral recording
and it is now supported by a wide range of software packages, including major stimulus presentation tools, real-time
analysis packages, and brain-computer interfaces. Outside of basic science, research, and development, LSL has
been used as a resilient and transparent backend in scenarios ranging from art installations to stage performances,
interactive experiences, and commercial deployments. In neurobehavioral studies and other neuroscience applications,
LSL facilitates the complex task of capturing organismal dynamics and environmental changes using multiple data streams
at a common timebase while capturing time details for every data frame.

Index Terms—Brain/Behavior Quantification and Synchronization (BBQS), Multimodal recording, Mobile Brain/Body Recording (MoBI),
Real-time synchronization.

I. INTRODUCTION1

Recording and modeling brain dynamics supporting active, natural2

cognition involving eye movements, motor and other behavior is3

becoming an integral part of neurobiological research and requires4

multimodal recording of the organism’s neural processes and interac-5

tions along with concomitant changes in its environment. Successful6

multimodal recording demands adequate temporal resolution and7

precise synchronization of concurrently recorded data streams. In8

human neuroscience, mobile brain/body imaging (MoBI) [1] is a9

multimodal recording concept requiring synchronized recording of10

brain, behavior, and environmental data streams with near millisecond11

(msec) resolution. Maintaining synchronization at this scale between12

brain (electro/magnetoencephalography, EEG/MEG; functional near-13

infrared spectroscopy, fNIRS, etc.), behavioral (e.g., body motion14

capture and eye tracking), physiological (electromyography, EMG,15

etc.), and environmental data (video, treadmill, balance plate, robots,16

or other agent positions and forces, sensory stimulation, etc.) often17

requires multiple computer systems with no common, hardwired18

clock to relate the timing of their outputs.19

Here, we describe the Lab Streaming Layer (LSL), a software frame-20

work that is helping researchers across academic and industrial settings21

meet the challenge of multimodal recording through its ability to22

collect data streaming from multiple devices and platforms operating23

asynchronously on a local area network (LAN) along with msec-level24

time synchronization and broad hardware and software compatibility.25

LSL is a freely available open-source project under the umbrella of a26

Corresponding author: C. Kothe (e-mail: christiankothe@gmail.com).

dedicated GitHub organization https://github.com/labstreaminglayer,27

plus individual core repositories available from the Swartz Center28

for Computational Neuroscience (SCCN) (meta-package and core29

library). A listing of over 150 known LSL-compatible device classes30

is compiled at https://labstreaminglayer.org, which also serves as a31

landing page for finding tooling, documentation, and other resources.32

LSL is supported by an active community of international contributors33

(several of whom are among the coauthors), and at this point, two34

annual workshops, one in Europe and one in the U.S., bring together35

users, contributors, and developers, and present learning opportunities36

for newcomers to the platform. Organizers currently include the37

SCCN and teams at the University of Oldenburg and TU Berlin.38

LSL’s popularity cannot be explained by any one of its features –39

rather, a focus on ease of use and robustness, a distributed model40

that allows for mixing and matching of multiple computers (desktop41

or mobile) and software from multiple vendors and open-source42

projects, likely contribute to its appeal, as does the broad platform43

compatibility including most major programming languages and all44

major desktop and mobile operating systems, along with built-in time45

synchronization. Lastly, strong network effects owing to LSL’s large46

ecosystem and installed base likely represent an additional factor for47

its wide apeal.48

One of LSL’s technical features is the synchronization of distributed49

neuroscientific data streams based on a peer-to-peer protocol modeled50

after the Network Time Protocol (NTP) as specified in RFC 5905[2]. A51

closely related component is LSL’s decomposition of timing error into52

three components: a constant, a slow-varying, and a noise component,53

which are each addressed separately. Using these two approaches,54

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://github.com/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/liblsl
https://github.com/sccn/liblsl
https://github.com/sccn/liblsl
https://labstreaminglayer.org
https://doi.org/10.1101/2024.02.13.580071


visualizer

video motion capture

electrophysiology

eye tracking

liblsl

liblsl

liblsl

liblsl

liblsl

LabRecorder
(data capture)

time-stamp

time-stamped data

outlets

Lab Streaming Layer network

inlets

inlet/outlet

liblsl

liblsl

AR/VR

show prompts

LAN

record
behavior

Fig. 1. System overview. The Lab Streaming Layer (LSL) creates a network connecting data acquisition, storage, and processing devices
overlaying the local network (LAN) on which they are streamed. LSL handles publishing and subscribing to data streams, clock synchronization,
accounting for network delays, and jitter using the LSL dynamic library (liblsl). LSL outlets publish data streams to the network that LSL inlets
can subscribe to. LabRecorder is a space-efficient and high-throughput LSL recording program that can supervise recording of streams from any
number of LSL outlets. Clients on the network include device integrations (seen on the left-hand-side), single- or multi-stream visualization or
real-time processing components, and arbitrary stimulus presentation and response collection mechanisms.

LSL can ensure that timestamps associated with every data sample,1

collected across multiple acquisition devices and computers, are2

accurately compensated for intrinsic device delay, clock drift, and3

jitter, in the presence of variable network transmission latency.4

This capability is crucial in neuroscience research where near-msec5

precision can be essential for accurate data analysis and interpretation,6

particularly in studies involving complex brain/body dynamics, high-7

intensity biomechanics, and multi-subject interactions.8

Challenges in collecting proper multimodal recordings include 1)9

the need to synchronize data streams from different platforms, 2)10

including data streams with heterogeneous sampling frequencies,11

3) set up and staff training of multiple recording workstations12

and (possibly proprietary) software, 4) interfacing with multiple13

proprietary data access APIs with limited OS and programming14

language support, documentation and learning resources, and 5)15

meeting challenges in data conversion, integration, storage, sharing,16

and reproducibility. Several hardware synchronization tools have been17

developed to address the pre-sampling synchronization in multimodal18

recordings. These include intricate systems of TTL (transistor-19

transistor logic) pulses, equipment for measuring throughput delays20

of recording instruments, and dedicating one instrument recording21

channel as a synchronizing clock [3]–[5].22

Recent advances in hardware-managed synchronization can im-23

prove common clock accuracy for digitally triggered events to tens of24

microseconds, including solutions based on shared clocks and analog-25

to-digital (A/D) converters and [6] radio-frequency trigger modules26

[7]. However, the use of hardware data synchronization approaches is27

very often not feasible in laboratories without resources to engineer28

special-purpose solutions across the range of proprietary acquisition29

systems researchers wish to use in their experiments. This is still more30

the case for low-cost and/or consumer-grade microelectronics-based31

systems that can now be used to record multimodal data inexpensively32

in paradigms, allowing, among others, greater degrees of participant33

mobility or at-home use.34

Heterogeneous sampling frequency, platform inaccuracies, jitter,35

and sampling fluctuations make synchronization of the data stream36

using ‘start/stop’ events insufficient for neuroscience purposes. Such37

a setup may cause synchronization to drift by many milliseconds38

within mere minutes of data collection, which typically grows longer39

over longer recording durations. A recent study of multimodal MoBI40

data collection methods concluded that frequent TTL pulses are41

needed to retain millisecond synchronization between data streams42

[3]. Without this or some other hardware or software organizing43

method, data streams with different sampling frequencies typically44

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580071


drift out of synchronization over time, compromising their worth for1

joint analysis.2

The setup and maintenance of professional timing equipment3

across multiple workstations running mutually incompatible recording4

software is time-consuming and may require a dedicated recording5

technician and/or experimenter team to run, monitor, and document6

the data collected by each system. A dedicated staff training process is7

often required to learn to operate the acquisition software associated8

with each system.9

Finally, owing to the proprietary nature and variety of data collection10

software and data access means for different systems and the need to11

record metadata stored in different forms and locations, performing12

data conversion and preprocessing, integration, annotation, storage,13

analysis, and sharing is challenging. All these factors limit access14

to high-quality research capabilities.15

A. The Broader Landscape in Multimodal Recording16

The LSL project was started in 2012 in response to an emergent17

need for robust multi-modal data acquisition at Swartz Center for18

Computational Neuroscience, UCSD by the first author (Christian19

Kothe), where also the multimodal Mobile Brain/Body Imaging20

(MobI) concept was originally proposed and first demonstrated [1].21

Available software at the time for this purpose was a partly proprietary22

package then in use at SCCN that followed a monolithic plugin-based23

design and which was widely perceived as lacking reliability. Another24

technology predating LSL is the Tobi Interface A [8], which aimed25

to standardize the representation of biosignals, but which was also26

implemented then in a monolithic manner. For robust distributed27

simulator event tracking, an existing solution was HLA Evolved28

[9], which influenced the attention paid to reliability. There was no29

real-time data access protocol natively supported by multiple vendors30

of EEG hardware, let alone a broader spectrum of neurobehavioral31

modalities.32

Since LSL is simultaneously a publish/subscribe overlay network33

and API, a time-synchronization solution, a multi-modal time-series34

and meta-data recording solution, and a real-time streaming tool35

with native support for event data, there are to our knowledge36

not many directly comparable alternatives. When reduced to its37

network protocol aspect, some alternatives are ZeroMQ1, MQTT2,38

plain TCP/IP, and 3 (e.g., as used in BRAND [10]). In the audio39

control domain an established protocol is Open Sound Control (OSC).40

Besides Open Epyhs, another project supporting multiple types of41

electrophysiology hardware is BrainFlow4, which currently supports42

a range of low-cost and DIY devices. For instrument and lighting43

control, respectively, well-known examples with good timing support44

are MIDI and DMX, but these do not leverage existing Ethernet45

or Wifi networking. However, it should be noted that even these46

solutions can, and some have been, integrated with LSL via bridge47

adapters. For time synchronization, alternatives are the precision time48

protocol (PTP) [11], which however requires dedicated hardware,49

and manual NTP-based synchronization. Without a doubt, numerous50

research labs have developed countless pieces of in-house software51

that acquires data from two or more devices, some of which are also52

1http://zeromq.org
2https://mqtt.org/
3https://redis.io
4https://brainflow.org

open source projects (e.g., Bonsai [12] with its focus on video and53

electrophysiology analysis of behaving rodents mainly on Windows54

workstations), but to our knowledge, none enjoy a degree of popularity,55

broad plug-and-play device compatibility, and large installed-base as56

LSL.57

B. LSL Limitations58

Despite the stringent LSL time synchronization guardrails described59

below, LSL performance has some limitations. Most importantly, LSL60

does not have access to any incoming data until the moment it is61

received by the microprocessor (CPU) or microcontroller unit (MCU)62

on which the LSL software communicating with the device is running.63

Thus LSL cannot itself learn or estimate whatever on-device delays64

within each recording device occurred (the intervals accruing between65

data signal input and its arrival in the software). Measuring on-device66

delay (or delay distribution) at least once for each acquisition stream67

is therefore necessary to allow LSL to convert the recorded times of68

data arrival into times of data capture. Once known, the delays, which69

LSL models as constant in between setup changes, can be accounted70

for and declared in software. This limitation is inherent to multimodal71

neuroscience data acquisition systems engineered without common72

hardware clock availability.73

C. LSL Advantages74

The LSL approach to synchronized aggregation of concurrent75

data streams has three main advantages that together significantly76

enhance the data acquisition process: 1) Facilitating multi-modal77

data collection with heterogeneous and/or irregular sampling rates,78

2) enabling distributed measurement and data processing across79

multiple systems, and 3) streamlining both real-time and offline80

access to time-stamped multimodal data through its companion XDF81

file format.82

The LSL unified Application Programming Interface (API) and pro-83

tocol standardize data exchange across any number of measurement84

modalities, creating a consistent real-time data stream access interface.85

This simplifies initial device setup, allowing LSL-compatible clients to86

require minimal or often no modifications to function with devices87

from different vendors. The API also offers the flexibility to use88

several of the most popular programming languages, allowing it to89

be integrated into almost any piece of existing software with little90

effort.91

LSL allows time-synchronized stream readouts from all networked92

devices, simplifying the experimental process to merely starting the93

included recording devices and melding the received streams into an94

integrated XDF data record using the LSL LabRecorder application (or95

any equivalent of choice), eliminating the need to manage multiple data96

file formats and increasing the efficiency of either near-real time or post97

hoc data analysis. Moreover, LSL network protocol standardization98

facilitates the distribution of data measurement and processing across99

multiple computers without explicit network parameter configuration,100

increasing data acquisition versatility.101

II. SYSTEM OVERVIEW102

LSL is a local network that runs on top of (or overlays) an Internet103

Protocol (IP) network running at the experiment site. LSL network104

peers can publish and subscribe to any number of streams of105

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580071


single- or multi-channel time-series data (Figure 1). LSL regularly1

quantifies clock offsets (OFS) and round-trip time (RTT) between2

peers to enable data stream synchronization. Multi-channel samples3

of any stream published on LSL contain the channel values (of flexible4

type) and a time stamp assigned by LSL or the LSL integration ("LSL5

App") for the device. Peer access to LSL is set up using a dynamic6

library (liblsl) available for most POSIX-compatible platforms [13]7

including Windows, Linux, MacOS, Android, and iOS. The LSL API8

has been designed to "hide" the complexities of time synchronization9

and real-time network programming from both researchers and device10

manufacturers, while ensuring maximum network resiliency against11

dropped connections and data losses.12

A. LSL Objectives13

Chief goals governing LSL construction were: a) to simplify the14

discovery and selection of the published streams, b) to simplify15

publishing of active data streams to subscriber applications in16

near real-time, c) to supply sufficient metadata to allow for full17

interpretation of the transmitted time series, d) to solve the time-18

synchronization problem for concurrent data streams with an error low19

enough for most neurobehavioral research (i.e., at most msec-scale),20

e) to provide adequate out-of-the-box fault tolerance across a range21

of commonly-encountered failure scenarios (such as single-device22

failures, reconnects, restarts, intermittent network connectivity loss,23

and so forth), f) to establish a unified multimodal data representation,24

and g) to offer an API to access, transmit, and (when needed) store25

data from any set of data streams, regardless of modality.26

Other possible objectives were explicitly not LSL design goals: a)27

building an online or post hoc data processing system (although such28

systems can easily be built on top of LSL), b) building an internet-29

scale and/or internet-facing data transport system, c) replacing or30

competing with existing data acquisition software (e.g., device drivers31

or applications), d) replacing or competing with non-signal intra-32

process or inter-process message queuing systems, or e) solving33

needs far outside physiological or neurobehavioral research (e.g.,34

high-energy physics).35

B. LSL Design36

The LSL software framework consists of three main components:37

the LSL API and language wrappers, the LSL core library (liblsl),38

and the LSL protocols (See Figure 2).39

The LSL API is a unified interface to communicate with the LSL40

core library from external instruments and devices. To maximize41

compatibility and ensure a stable Application Binary Interface (ABI),42

LSL presents a C API in agreement with shared-library best practices,43

although the core is implemented in C++. Thanks to this stable ABI,44

support for other programming languages can be implemented with45

the C Foreign Function Interface (FFI), which enabled the creation46

of a wide range of wrappers for languages such as Java, C#, Python,47

Matlab, Rust, and several others. A header-only C++ API is also48

natively provided by the core library. These API wrappers provide49

the same metaphors, terminology, and functionality that the core50

C/C++ API provides.51

Each existing API attempts to respect the idioms and standards52

of the language in which they are implemented. So, the Python API53

aims to be ‘Pythonic’ while the C API is an example of a ‘classical’54

C style, while at the same time, all APIs cover an equivalent feature55

LAN

liblsl
LSL Core Library (liblsl),
in charge of running LSL protocols

LSL API to communicate to liblsl (C)

C/C++
Header

Python
Wrapper

Java
Wrapper

MATLAB
Wrapper ...

outlet:
instrument data

Inlet:
LabRecorder

LSL system design Inlet:
visualizer

Fig. 2. Lab Streaming Layer Design. LSL consists of three main
components: 1 LSL language wrappers and API, 2 LSL core library
(liblsl), and 3 LSL protocols. The LSL API is a unified interface enabling
communication with the LSL core library from external instruments and
devices. The API was originally composed in C/C++ and is wrapped
in other languages. The LSL core library (liblsl) is written in C++ and
implements all features that LSL offers. The LSL protocols are the set
of steps and standards required to establish reliable communication
and synchronization between peers.

set. Developers can use the API to design executable programs to56

communicate with their peers on the network, publish data, and57

subscribe to streams from other peers.58

A simple yet runnable example in Python that discovers, subscribes59

to, and then reads from an EEG stream on the LSL network is given60

in the following listing (equivalent examples are provided for all61

supported programming languages):62

63
from pylsl import StreamInlet, resolve_stream64

65

streams = resolve_stream('type', 'EEG')66

inlet = StreamInlet(streams[0])67

68

while True:69

sample, timestamp = inlet.pull_sample()70

print(timestamp, sample)7172

A corresponding simple example that generates 8 channnels of73

random floating-point numbers and streams them to LSL at approx.74

200 Hz, here written in C++, is shown below. For best interoperability75

it is recommended to additionally specify meta-data such as channel76

labels, which is not shown here. Equivalent functionality is available77

for all other supported programming languages.78

79
#include <chrono>80

#include <lsl_cpp.h>81

#include <thread>82

83

const int nchannels = 8;84

85

int main(int argc, char *argv[]) {86

lsl::stream_info info("MyStream", "EEG",87

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580071


nchannels, 200.0);1

lsl::stream_outlet outlet(info);2

3

float sample[nchannels];4

while (1) {5

for (int c = 0; c<nchannels; c++)6

sample[c] = ((rand() % 1000) / 1000.0);7

outlet.push_sample(sample);8

std::this_thread::sleep_for(9

std::chrono::milliseconds(5));10

}11

return 0;12

}1314

The LSL core library (liblsl) is written in modern C++ and15

manages features that LSL offers. Each peer needs to have a copy of16

the liblsl to communicate with other peers on the network. Our effort17

has been to maintain liblsl as a self-contained package to minimize18

its dependencies on packages that are not shipped with the LSL19

source code. Therefore, users should be able to compile the library20

should the compiled code not be available on a given platform.21

Internally, liblsl uses pugixml [14] for XML and XPath processing,22

loguru [15] for logging with configurable verbosity and log targets, and23

Boost ASIO [16], [17] for portable high-performance asynchronous24

networking.25

LSL Network Protocols. LSL internally implements five network26

protocols to allow peers to create and maintain outlets to publish data27

streams, inlets to subscribe to streams, and to stream information28

objects each carrying all the requisite metadata for a data stream. By29

protocols, we mean the steps and standards to establish outlets, inlets,30

and metadata transfers. The five protocols are titled (1) Discovery, (2)31

Subscription, (3) Stream transmission, (4) Metadata transmission, and32

(5) Time synchronization. Adherence to the protocols is guaranteed33

by the core library (liblsl).34

1) The Discovery Protocol: The first stage in establishing35

communication between inlets and outlets is stream discovery. An36

application may discover outlet peers by broadcasting query messages37

into the network via UDP broadcast and UDP multicast (RFC1112)38

[18] to user-configurable multicast groups and awaiting responses.39

The query message contains an XPath 1.0 [19] compliant query string40

that specifies some metadata properties of the stream of interest (e.g.,41

type="EEG"). The host of each published stream on the network42

will then respond to matching queries with a small response packet43

that contains the essential properties necessary for establishing a44

connection specific to the querying peer so that a single machine can45

stream data to multiple peers at once. These include the name, type,46

and unique identifier of the stream and are formatted as an XML47

string. Responses to identical queries are cached for efficiency.48

For convenience, all of this happens ‘under the hood’ of a single49

LSL function call. The programmer of an LSL application need not50

be concerned with the details of interfacing with a network stack51

for all of this to work. Furthermore, queries can be transported over52

several network protocols, including UDP broadcast and multicast53

of various scopes, and can be done using IPv4 and/or IPv6. LSL54

will correctly choose the right communication technique so that the55

programmer can be agnostic of all the underlying network protocols.56

The same LSL query protocol is used to automatically reconnect57

to a peer should the connection be lost during a data transfer – for58

example, if a software or network computer crashes, or a change59

in network topology occurs. Connection recovery will be successful60

even if the peer’s IP address has changed. This provides substantially61

greater resilience than most protocols that cannot recover from a62

change in IP addresses.63

2) The Subscription Protocol: After a desired active outlet object64

is discovered, the host application on the subscriber side will want65

to connect a stream inlet to the outlet. This process is called an LSL66

subscription, enacted by establishing a TCP connection to a network67

endpoint advertised in response to the discovery query. A brief68

two-way protocol negotiation handshake establishes this connection.69

The handshake resembles HTTP/1.1 GET and its response [20].70

The purpose of this handshake is to exchange several transmission71

parameters such as the protocol version, byte order, buffer sizes,72

support for floating-point subnormals, etc.73

A mutually agreed-upon sequence of test-pattern data is also74

transmitted to confirm that both parties can support the same protocol.75

The metadata header (stream information object) is also transferred76

from the host (outlet) to the client (inlet) to confirm that the endpoint77

does carry the requested data stream. Once this exchange is completed,78

the connection is formed, and time-series data will flow from the79

outlet to the inlet until the connection is terminated.80

3) The Stream Transmission Protocol: LSL transmits time-series81

data as a byte stream split into packets by the underlying network layer.82

Samples in the time series may be marked for immediate transmission83

to enable use in real-time applications. This effectively indicates a84

‘flush’ operation wherein the marked sample(s) are to be transmitted85

as soon as the underlying network permits. The byte stream is a86

sequence of encoded message frames. Every frame corresponds to87

one sample and includes a losslessly delta-compressed timestamp88

followed by the sequence of data values (bytes) encoded according to89

the format agreed upon during the connection handshake. While the90

underlying protocol is sample oriented, the choice between immediate91

or deferred transmission allows users to send or receive time series92

either sample-by-sample or at the granularity of multi-sample chunks,93

where either side can choose to use either protocol, using easy-to-94

use high-level functions (the above code listing shows sample-wise95

sending and receiving).96

4) The Metadata Transmission Protocol: In addition to time-97

series data, a stream’s metadata must be transferred from peer to98

peer. This metadata plays the same role as a file header in a time-99

series recording and contains information such as the stream name,100

type, channel count, sampling rate, etc. The metadata needs only be101

transmitted once and is thus treated by LSL as ‘out-of-band’ data.102

It is only transmitted on client request over a TCP connection. A103

simple connection handshake also precedes this transfer.104

The metadata is plaintext and structured in accordance with an105

attribute-free subset of XML and can be of any length. The metadata106

structure is not prescribed by LSL, but for interoperability it is107

strongly recommended to adhere to a specification of content-types108

(modalities such as EEG, Audio, Gaze, and so forth) and content109

type specific nomenclature of XML fields. The latter specification110

was co-developed with the XDF (extensible data format) project and111

is available online from the XDF GitHub Wiki. Since this metadata112

specification is plaintext XML, applications may extend and augment113

this metadata in any way that is suitable for a given data stream114

without breaking compatibility, or deviate when necessary.115

5) Time Synchronization Protocol: A common use case of LSL116

is streaming multimodal time series data from multiple peers to a117

separate peer that subscribes (monitors and/or records) the multimodal118

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://github.com/sccn/xdf/wiki/Meta-Data
https://doi.org/10.1101/2024.02.13.580071


LAN

liblsl

LabRecorder PC

liblsl

NI-DAQ PC

NI-DAQ
liblsl

BioSemi PC

OUT x(t)

IN
0

1

x>0.5

liblslliblsl

liblsl
LabRecorder

liblsl

Local PC

DataIn Marker

BioSemi Marker

pulse event

BioSemi
NI-DAQ

OUT x(t)

IN
0
1

x>0.5

a) test setup, local delay

LSL local and network test for instrument delay

b) test setup, network delay

Fig. 3. Synchronization performance setup. The setup consists of a National Instruments Data Acquisition Box (NI-Daq) that generates a
periodic pulse signal (DataOut) and receives the same signal (DataIn). The same NI-Daq is used to create an LSL marker when the pulse is going
high. At the same time, a BioSemi Active-II receives the same pulse signal as an LSL stream. The BioSemi stream and the marker stream are
recorded using LabRecorder, the native LSL recording program. The LSL marker stream is used to calculate the synchronization accuracy of the
BioSemi stream. The local setup is using a single computer to connect to the NI-Daq and BioSemi devices and record the streams using LSL
LabRecorder. The network setup is using sepearate computers to connect to the NI-Daq, BioSemi, and the LSL LabRecorder.

data. LSL’s timestamping function returns the time of the most1

steady (i.e., monotonically increasing) high-precision computer clock2

available that has a minimum resolution of 1 msec or better (typically3

the machine uptime). The time offset between multiple computers’4

clocks, as well as their relative drift, is continually measured and5

accounted for by LSL when synchronization information is utilized.6

When an inlet peer wishes to synchronize its clock with the respective7

outlet peer, a structured packet exchange is initiated following the basic8

NTP model. Since clocks need to be periodically re-synchronized9

due to the drift, this process will be repeated regularly (e.g., by10

default, every 5 seconds). LSL employs the clock filter algorithm11

of the Network Time Protocol (NTP) [2] to account for random12

spikes in network transmission delay. This process uses multiple13

packet exchanges to estimate the clock offset (OFS) and round-trip14

times (RTT) between peers in rapid succession (e.g., ten times across15

200ms), yielding a set of OFSs and RTTs from which the one with16

the lowest RTT is retained.17

Each packet exchange attempt for clock synchronization consists
of a packet sent from the initiating peer to the receiver. This carries
the local timestamp of the initiating peer and is noted as 𝑡0. The
receiver then responds with two more timestamps, the receiving time
of the original packet 𝑡1, and the time of resend 𝑡2. Upon receipt
of this packet by the initiating peer, a final timestamp 𝑡3 is taken.
Then,

𝑅𝑇𝑇 = (𝑡3 − 𝑡0) − (𝑡2 − 𝑡1) (1)

𝑂𝐹𝑆 = ((𝑡1 − 𝑡0) + (𝑡2 − 𝑡3))/2 (2)

Therefore, 𝑅𝑇𝑇 is the duration of the entire round trip minus the18

time spent on the receiving peer, and 𝑂𝐹𝑆 is the averaged clock19

offset between the peers with symmetric network transmission delays20

canceled out. This measurement is a minimum-noise realization21

(because we choose the OFS at the minimum RTT) of the unbiased22

clock offset between the two peers. There can be a transmission time23

asymmetry between the forward and backward network path (e.g.,24

due to driver implementation details), but the residual error after25

clock filtering is upper-bounded by the lowest delay of a machine’s26

network implementation and is therefore assumed to be well under27

1 ms with most network hardware.28

Using this time-varying measurement, LSL then constructs a model
of the observed time stamps 𝑡obs as a function of the time 𝑡actual
when the measurement actually occurred, an optionally smoothed
estimate of the clock offset OFS, a device-specific constant offset 𝜏,
and a zero-mean noise term 𝜀:

𝑡obs = 𝑡actual + 𝜏 + OFS + 𝜀 (3)

Using this formula, it is possible to recover 𝑡actual for regularly29

sampled time series either using a recursive least-squares estimator30

in real time or linear regression in post-hoc data analysis, both of which31

are supported by LSL for the former and by XDF implementations32

for the latter.33

C. The Extensible Data Format (XDF)34

The Extensible Data Format (XDF) is an open-source and general-35

purpose natively multi-modal container format for multichannel time36

series data with extensive associated metadata. XDF is tailored towards37

biosignal data such as ExG, GSR, and MEG, but it can also handle38

data with a high sampling rate (like audio) or data with a high39

number of channels (like fMRI or raw video). In general, every40

data stream collected by the LabRecorder, along with metadata41

and synchronization information is recorded into a single XDF file.42

Crucially, XDF follows the policy of recording all timing-related43

ground-truth "as it happened", which allows for post-hoc analysis44

and recovery of data in case of misbehaving devices or intermittent45

failures during a recording. A result of this choice is that, while XDF46

importers present a simple interface similar to that of many other47

file importers, XDF files represent an exact record of what occurred48

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580071


during an experiment, which can at times be complex, including a1

device disappearing and later (e.g., after an unplanned battery swap)2

reappearing.3

In case of a high-bandwidth time series that may not be transferable4

over the network (such as uncompressed video), each frame of the5

stream may be timestamped and stored in the local machine (outlet)6

while the timestamp information and the metadata would be sent7

over LSL to the inlet machine and would be added to the XDF files.8

Another scenario in which this may be favorable is when video data9

falls under stricter privacy and regulatory requirements as personally10

identifiable information (PII) than most other information that can11

be recorded into an XDF file.12

The XDF metadata is stored as XML content in an efficient13

binary chunk-oriented container file format, and the recognized14

metadata parameters are available at the XDF GitHub repository.15

XDF predefines an extensible set of content-types (e.g., EEG, Audio,16

NIRS, and so forth) and associated metadata specifications, following17

a lightweight open process by which this specification is extended.18

This allows a single file to maintain comprehensive yet extensible19

modality-specific metadata on par with most unimodal biosignal file20

formats. XDF tools are available for download at the XDF GitHub21

page. A derived ANSI standard (ANSI/CTA-2060-2017) specifying22

a file format for a consumer-grade variant of XDF has since been23

published [21].24

D. Failure Resilience25

Preventing data loss is a major objective during data collection,26

especially in multimodal data acquisition where the probability of27

hardware issues grows linearly with the number of devices involved28

in a given data collection setup. LSL is equipped with a number29

of mechanisms for preventing catastrophic crashes and loss of data30

to ensure smooth operation, even in the event of computer crashes31

and lost network connections. To prevent data loss, LSL outlet and32

inlet objects can use variable-size buffers that have a configurable,33

arbitrarily large capacity. So, in case an inlet temporarily could not34

receive data from an outlet, the data can be buffered until the inlet35

can handle the transfer. The upper limit of all of this is the computer36

resources and network throughput.37

In the event of an outlet dropping out, any inlets connected to38

the outlet will attempt to reconnect. An event will trigger within the39

inlet to periodically search for the outlet and attempt to reconnect40

as soon as the outlet is discovered. Since the outlet’s information41

object can be created with a unique ID, this discovery will happen42

automatically even if the outlet is recreated on a different computer43

in the network and with a different IP address.44

If an outlet drops out while an inlet is recording data, the45

timing information for the dropped stream can be updated after the46

rediscovery of the outlet, so that the outlet timestamp is consistent47

with the timestamp information prior to the dropout. This behavior48

is agnostic to the crash type and could resume recording of the49

discovered outlet even if the disconnection is a result of changing50

network topology, a computer crash, or hardware failure like a dead51

battery.52

Since these recovery processes happen automatically, the LSL user53

is shielded from having to cope with anything other than potentially54

a gap in a recorded data stream in the event that a device was55

intermittently not recording data. XDF tools typically come with56

built-in support for detection and correct handling of such data gaps.57

These collective built-in efforts to recover connections between peers58

realize LSL’s failure resilience.59

E. Software Stack60

LSL includes an ecosystem of applications to publish and61

subscribe to data streams, APIs in various languages built around62

the core dynamic library (liblsl), an extensible data recording63

format, XDF, post-hoc analysis for loading LSL synchronization64

performance, and tools for performing offline time-synchronization.65

This ecosystem can be accessed via the landing page and GitHub66

organization and meta-repository. LSL also offers rich and open-67

source documentation maintained by its developer community,68

available at https://labstreaminglayer.readthedocs.io.69

However, it is far beyond the scope of this article to do justice to70

the greater LSL software ecosystem, which includes over a hundred71

compatible client applications, some open source and others vendor-72

native. Many applications in this greater ecosystem are hosted under an73

umbrella GitHub organization, while many others are vendor-provided74

data acquisition software with built-in LSL support, and an unknown75

number of further LSL clients can be found via internet searches.76

While this article focuses on acquisition devices, it is important77

to note that the LSL ecosystem also includes a robust collection78

of compatible stimulus presentation software, including most major79

programs used for this purpose, which are indispensable for scientific80

experimentation. Furthermore, the ecosystem includes software for81

real-time processing of collected data (for example for brain-82

computer interface or neurofeedback applications), visualization,83

troubleshooting, experiment management, and various other tasks.84

F. Continued Development and Maintenance85

Researchers and programmers from both academic and commercial86

sectors all over the world have contributed to the LSL source code87

and APIs. However, changes to the core library (usually bug fixes)88

are made very infrequently and with ultimate caution. Backward89

compatibility with existing applications is maintained at all costs.90

The bug rate is very low (less than one discovered every 6 months)91

and so far, all bugs that were discovered were non-critical. Some92

bugs seen so far include a few memory leaks and typing errors in93

printing metadata and error messages. We have not found any bug94

affecting the proper operation of sending and receiving data (the95

primary LSL objective) in the past several years. Bugs in the LSL96

application ecosystem and APIs are more common, but given the97

stability and reliability of the core library and the simplicity of its98

interface, these bugs are relatively trivial to identify and cannot affect99

(i.e., crash) other LSL inlets and outlets – one of the less obvious100

benefits of a decentralized design.101

To maintain stability, unit tests covering a wide array of both internal102

and API functions are run on all computing platforms for every change103

committed to the source code. In addition, the library is periodically104

stress-tested with hundreds of streams, randomized disconnects,105

shutdowns, reconnects, and randomized stream parameters. During106

such extreme network stress tests, some consumer-grade network107

equipment has been found to be less reliable (i.e., crashing) than the108

LSL implementation itself. Our dedicated benchmarks ensure that109

changes in operating systems and libraries do not impair the data110

exchange and synchronization performance.111

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://github.com/sccn/xdf/wiki/Meta-Data
https://github.com/sccn/xdf
https://github.com/sccn/xdf
https://github.com/sccn/xdf
https://labstreaminglayer.org
https://github.com/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://labstreaminglayer.readthedocs.io
https://doi.org/10.1101/2024.02.13.580071


pulse event - DataIn Marker

latency (10-5 s)
-3 -2 -1 0

0.5k

1k

sa
m

pl
es

latency distribution

latency (10-3 s)
11.8 12.0 12.2 12.4 12.6

0.1k

0.2k

sa
m

pl
es

BioSemi Signal
DataIn Signal
DataIn Marker
BioSemi Marker

instrument latency in Local LSL

time (10-3 s)
10 20 30 40

0

10

20

si
gn

al
 a

m
pl

itu
de

 (m
V)

instrument latency in the local LSL setup

Fig. 4. Single-machine (local) synchronization performance. The local setup is using a single computer to connect to the NI-Daq and BioSemi
devices and record the streams using LSL LabRecorder.

III. TESTING AND RESULTS1

LSL has been extensively tested and validated by the biosignal2

research community in several studies [6], [22]–[28]. Below, we3

provide some data concerning its performance on a local network4

(i.e., all LSL inlets and outlets running on a single machine), and on5

the distributed network synchronization performance. We provide a6

simple yet effective recipe to determine, for a given data instrument,7

the total delay of the data path for a given instrument, which is a8

sum of the internal hardware delay (e.g., on-device buffers), wireless9

transmission latency and operating system, device driver, and driver10

access latency, which we term in the following the "setup offset" 𝜏.11

Using a scientific grade analog-to-digital/digital-to-analog I/O12

device (National Instruments Data Acquisition Box, NI-Daq, Austin,13

TX) we created a periodic pulse signal (Figure 3). We used the14

same NI-Daq to receive the same signal (DataIn), and create an15

DataIn marker when the pulse was going high. To create the DataIn16

marker, we chose the time the recorded signal reaches halfway to17

its maximum amplitude. We also recorded the pulse event directly18

from NI-DAQ using LSL.19

At the same time, we used another scientific-grade signal20

recording device (BioSemi Active-II, BioSemi B.V., Amsterdam,21

the Netherlands) and read the same pulse signal as an LSL stream.22

We used a similar threshold for the BioSemi-recorded pulse signal23

(i.e., halfway to maximum amplitude, BioSemi Marker), so that we24

could add time markers when the pulse signal went high. We recorded25

the BioSemi stream and the LSL marker stream using LabRecorder,26

the native LSL recording program.27

Finally, we compared the timestamps of the marker stream and the28

‘high’ points of the BioSemi stream. The NI-Daq data input stream29

was sampled at 10 kHz, and the BioSemi data stream was sampled30

at 2048 Hz.31

We expected to observe a constant offset (setup offset) between32

the two markers (i.e., DataIn Marker and BioSemi Marker) due to33

the setup and network topology, plus some jitter. We ran the NI-34

Daq controller, BioSemi, and LabRecorder on (1) a single machine35

(Intel Windows 7) to test the LSL’s local performance and (2)36

used separate network-attached machines for each of the NI-Daq37

controller, BioSemi, and LabRecorder (Intel Windows 7 for NI-Daq38

and Intel Windows 10 for each BioSemi and LabRecorder) to test39

LSL’s network performance. We analyzed the difference of 150040

high-points generated by NI-Daq and BioSemi systems to quantify41

jitter and setup offset.42

Here, we purposefully avoided using state-of-the-art machines43

because we wanted to test LSL performance on a more typical data44

acquisition setup.45

A. Instrument Latency in a Local LSL Setup46

The results showed a five-microsecond lead time between the47

time a DataIn Marker was issued and the pulse events satisfied our48

defined threshold (Figure 4a). This is well below the 100-microsecond49

resolution of the NI-Daq reader, so we considered this lead time50

negligible. Comparing the BioSemi Marker and the DataIn Marker51

latencies indicated a 12.20 ms setup offset between the two markers52

(Figure 4b). The jitter of this offset (i.e., the standard deviation of53

the lag (see Figure 4c) was 156 microseconds, below the ~500-54

microsecond Biosemi time resolution. Thus, the two streams could55

be aligned by removing this (pre-measured) device setup offset, and56

time jitter should not affect this alignment.57

B. Instrument Latency in a Networked LSL Setup58

To assess the setup offset of the instrument (in this example the59

BioSemi amplifier) in a distributed network, we separated the program60

controlling the NI-Daq (sending the DataIn Marker and storing pulse61

events), the program sending the BioSemi stream, and LabRecorder62

to network-attached computers. The results showed an even smaller63

setup offset between the DataIn Marker and the BioSemi Marker64

than the results observed in the single-machine LSL performance65

test (here, networked offset: 6.26 ms, vs. local offset: 12.20 ms,66

(Figure 5a). The offset jitter (presented as the standard deviation of67

the offset, (Figure 5b) was 145 microseconds, similar to the results68

from the local network experiment.69

This offset decrease might have arisen from the separation, here,70

of the BioSemi and NI-Daq machines and potentially by faster71

performance of the BioSemi application and the associated driver72

running on Windows 10. However, the total setup delay for a given73

instrument is frequently dominated by device transmission delays,74

including large on-device buffer sizes that are only periodically75

transmitted, wireless (e.g., Bluetooth) protocol transmission latencies,76

and may add up to several 10s of milliseconds. Such discrepancies77

underpin the importance of testing setup offset (including device78

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580071


instrument latency in Network LSL

BioSemi Signal
DataIn Signal
DataIn Marker
BioSemi Marker

time (10-3 s)
10 20 30 40

0

5

15

si
gn

al
 a

m
pl

itu
de

 (m
V)

instrument latency in the network-attached LSL setup

latency distribution

latency (10-3 s)
5.8 6.0 6.2 6.4

0.1k

0.2k

sa
m

pl
es

Fig. 5. Network synchronization performance. The network setup is using separate computers to connect to the NI-Daq, BioSemi, and the LSL
LabRecorder.

throughput) for all devices and configurations before recording1

experiment data. Setup offsets can be manually added to the2

metadata while the other potential ad-hoc offsets caused by the3

network delay or asynchrony would be recorded into the XDF4

automatically. Both types of offsets will be addressed upon importing5

the XDF files with the help of the LSL Time synchronization6

protocol (II-B5) and using the load_xdf.m function (https:7

//github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m).8

C. Determining the Setup Offset9

As we demonstrated above, adjusting recording times for setup10

offset is imperative for successful multimodal data acquisition and11

synchronization. Modifying the setup configuration (e.g., moving an12

outlet from one machine to another) may change the setup offset.13

Any change in network configurations or updates to their software,14

drivers, or operating systems should prompt a recheck. Here, we15

present a simple yet effective algorithm to determine setup offset16

for every instrument, a procedure similar to that described above in17

III-A.18

To determine the setup offset of an instrument, we suggest using a19

microcontroller unit (e.g., an Arduino) board to send TTL pulses to20

both the LSL network and to the instrument as a data input (Figure 6).21

Publishing the TTL pulse as a DataIn Marker can be accomplished22

through a control software that registers the TTL pulses, or can be23

directly published by the MCU, since the LSL developer community24

has provided support for running liblsl on some MCUs. The data25

from the instrument should then be streamed to the LSL network.26

Both the DataIn Marker and the instrument data should be recorded27

using LabRecorder. The setup should be chosen in a way that most28

exactly represents the experiment configuration. After reconstructing29

a marker that corresponds to the TTL pulses from the instrument30

data (instrument marker, similar to the BioSemi Marker in III-A),31

the average offset between timestamps of the DataIn markers and32

the instrument marker is the setup offset.33

We should note that setup offset can be either positive or negative.34

A positive offset means that the instrument marker occurs after35

the DataIn marker, indicating an instrument lag in capturing and36

transmitting the data to the recorder. A negative offset means the37

instrument marker occurs before the DataIn marker; this may happen38

for sensory triggers (e.g., auditory pulses) where the instrument39

marker is the time that the trigger pulse is sent to the auditory40

transducer (e.g., a loudspeaker), while the DataIn marker indicates41

the time at which the transducer actually produces the pulse.42

A successful setup with sub-millisecond internal delay using43

an affordable MCU board (Arduino) has been benchmarked and44

could be easily replicated from [29]. A commercial solution using45

dedicated hardware for determining setup offsets is also available46

from Neurobehavioral Systems, Inc.47

Pitfalls and Tweaks48

LSL can address some known hardware failures or network49

connectivity issues. Sometimes, a hardware device may exhibit a50

significant change in sampling rate (e.g., in our experience, a webcam51

that frequently switches between 30 and 60 frames per second) or52

suffer from high and variable packet loss (e.g., a Bluetooth device that53

goes in and out of operational range). In these cases, the load_xdf’s54

attempt to linearly smooth the timestamps will significantly (even55

catastrophically) distort the data. This can be checked by comparing56

the effective sampling rate as quantified byload_xdf (as the number57

of samples divided by the recording length) with the sampling rate58

reported in the device metadata. If these two sampling rates are59

not close to each other, we suggest calling load_xdf with the60

flag ‘HandleJitterRemoval’ set to false. Oftentimes it is61

possible to recover such recordings with some manual effort thanks62

to XDF’s policy to record all underlying ground-truth timing data.63

A similar issue can arise by using LSL through a wireless local64

area network (WLAN). If there are multiple streams on a heavily65

utilized WLAN, the clock offset packet exchange can sometimes66

overload the network and cause gaps in the data. In this case, it may67

be appropriate to optimize the LSL configuration file for WLAN.68

The recommended settings for WLANs are:69

70
[tuning]71

TimeProbeMaxRTT = 0.10072

TimeProbeInterval = 0.01073

TimeProbeCount = 1074

TimeUpdateInterval = 0.2575

MulticastMinRTT = 1.076

MulticastMaxRTT = 307778

This text can be placed in a file called lsl_api.cfg. If this file79

is in the same folder as the device’s LSL application, these settings80

would only be applied to the device. If the file is in ~/lsl_api/,81

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m
https://github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m
https://github.com/xdf-modules/xdf-Matlab/blob/master/load_xdf.m
https://www.neurobs.com/menu_presentation/menu_hardware/labstreamer
https://doi.org/10.1101/2024.02.13.580071


13 12 11 10

9 8 7 6 5 4 3 2

L
5V A0

ANALOG IN

AR
EF

1

G
N

D

TX
RX

R
ES

ET

3V
3

A1 A2 A3 A4 A5VI
N

G
N

D

G
N

D

IO
R

EF

IC
SP

ICSP2

ON

MicroController
POWER

01
TX

0

R
X0RESET

liblsl

LabRecorder PC

liblsl

A/D PC, or 
onboard liblsl

liblsl

Instrument PC

0
1

0
1

TTL pulse

suggested procedure for Setup Offset determination

Fig. 6. Setup offset determination algorithm. The setup offset can
be determined by sending a TTL pulse from a microcontroller board
to the LSL network and to the instrument. The instrument data would
be streamed to LSL, and the LSL marker would be recorded using
LabRecorder. The setup offset would be the average offset between
the DataIn marker and the instrument marker.

the changes would be applied to the user globally. If the file is placed1

in an /etc folder (C:\etc on Windows), the tweaks will be global2

for all users.3

Since applications can supply their own time stamps upon4

submitting a sample to LSL, potentially outside of the control of5

the user, it is possible to selectively ignore such time stamps via6

the user-facing configuration file. This can be necessary when a7

third-party application uses non-standard time stamps (e.g., from8

an alternative clock source such as on-device clocks). Since LSL9

tracks time offset between host machines and not between arbitrary10

application-chosen clocks, in such cases the recorded data would11

appear mutually unsynchronized. To enable this feature, the user can12

put the following lines into their lsl_api.cfg:13

14
[tuning]15

ForceDefaultTimestamps = 11617

IV. SUMMARY AND CONCLUSION18

The Lab Streaming Layer is a now well-established, reliable19

and easy-to-use multimodal signal acquisition, transmission, and20

recording platform tuned for synchronously recording multimodal21

brain and behavioral data. Oftentimes, using LSL with a given device22

can be as simple as enabling LSL support in a vendor-provided data23

acquisition software, if supported, or alternatively using one of the24

existing open-source integrations for the device, and recording the25

data on the same or another machine with the LabRecorder or another26

LSL-compatible recording tool. However, LSL also scales to complex27

setups involving multiple machines and several dozen acquisition28

devices or data streams. In one multiperson, multiple touchscreen29

simulation [30], we successfully used LSL to record from over 4030

LSL data streams5 in recording sessions lasting multiple hours.31

Our exemplar tests support the excellent sub-millisecond accuracy32

of the LSL timestamps. As our tests also showed, distributing the33

5Two concurrent subjects, each with instruments including a 267-channel
BioSemi, microphone, force plate, eye-tracking, three cameras, motion capture,
and event marker streams.

computational load of processing multiple streams across separate34

network-attached machines can at times outperform the setup offset35

(and latency) achieved by capturing all data streams on a single,36

perhaps heavily loaded, machine, which is made trivial thanks to37

LSL’s ability to seamlessly discover streams across the network38

without additional configuration.39

LSL as a purely software-based approach has an inherent limitation40

when no hardware triggering mechanisms are used, which is that41

LSL as a network is not aware of any latency occurring within the42

acquisition device or in the device drivers before data reaches the43

LSL application for the device. While LSL integrations can make44

reasonable assumptions, and some do, any residual offset in this45

latency, which typically amounts to a few 10s of milliseconds should46

be ascertained prior to conducting a study, ideally through testing using47

the actual devices and parameter settings to be used during subsequent48

recordings. A similar limitation applies to event marker time stamps49

pertaining to button presses or on-screen presentation, where again50

it is recommended to measure the input and/or display latency using51

off-the-shelf tools such as photodiodes or high frame rate cameras.52

Lastly, when the consistency of device sampling rate itself and/or53

the stability of its setup offset cannot be trusted, it may be necessary54

to implement a hardware-based data timing device to monitor the55

process. Therefore, while LSL can recover lost connections and56

compensate for offsets and jitter, an appropriate initial setup of the57

instruments and measuring setup offset are imperative for an optimally58

synchronized multimodal recording.59

While LSL accommodates a relatively large buffer to minimize60

data loss in case of a connection drop or subpar network speed, given61

a long enough (e.g., a few minutes) network disconnection, the buffer62

may eventually run out with the resulting loss of data. Similarly,63

LSL data throughput is limited by network and computer capacity.64

While many data streams can be easily transferred at multiple KHz65

rates, some data streams, such as high-definition video, may saturate66

the bandwidth. In such a case, using lightweight compression before67

broadcasting the stream or storing the timestamped data on the local68

machine and only streaming the timestamps through LSL may resolve69

this issue.70

A large ecosystem, transparent codebase and development, zero-71

configuration, excellent latency management, and reliability have72

made LSL a go-to solution for synchronized multimodal quantification73

of brain and behavior. Researchers can enjoy LSL with minimal74

and one-time initial setup and be sure that LSL will stream and75

store their multimodal data streams accurately and reliably. Finally,76

LSL development thrives on an open and welcoming community of77

enthusiasts. Anyone can join this effort via LSL’s community hubs.78

ACKNOWLEDGMENTS79

The first version of the LSL software was written at the Swartz Center for Computational80

Neuroscience, UCSD, funded by the Army Research Laboratory under Cooperative81

Agreement Number W911NF-10-2-0022 as well as NINDS grant R01NS047293, and82

by a gift to UCSD from The Swartz Foundation (Old Field, NY).83

CK and TM have received compensation from Intheon, which offers products and84

services that make use of LSL. TS, DM, CB, and MG have provided consulting services85

or have worked on products that use LSL.86

REFERENCES87

[1] S. Makeig, K. Gramann, T.-P. Jung, T. J. Sejnowski, and H. Poizner, “Linking88

brain, mind and behavior,” Int. J. Psychophysiol., vol. 73, pp. 95–100, Aug. 2009.89

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.13.580071


[2] J. Martin, J. Burbank, W. Kasch, and D. L. Mills, “RFC 5905: Network time1

protocol version 4: Protocol and algorithms specification.” https://datatracker.ietf.2

org/doc/rfc5905/, June 2010. Accessed: 2023-11-27.3

[3] F. Artoni, A. Barsotti, E. Guanziroli, S. Micera, A. Landi, and F. Molteni, “Effective4

synchronization of EEG and EMG for mobile brain/body imaging in clinical5

settings,” Front. Hum. Neurosci., vol. 11, p. 652, 2017.6

[4] C. Maidhof, T. Kästner, and T. Makkonen, “Combining EEG, MIDI, and motion7

capture techniques for investigating musical performance,” Behav. Res. Methods,8

vol. 46, pp. 185–195, Mar. 2014.9

[5] D. Bannach, O. Amft, and P. Lukowicz, “Automatic event-based synchronization10

of multimodal data streams from wearable and ambient sensors,” in Lecture Notes11

in Computer Science, vol. 135 of Lecture notes in computer science, pp. 135–148,12

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.13

[6] C.-H. Chuang, S.-W. Lu, Y.-P. Chao, P.-H. Peng, H.-C. Hsu, C.-C. Hung, C.-L.14

Chang, and T.-P. Jung, “Near-zero phase-lag hyperscanning in a novel wireless15

EEG system,” J. Neural Eng., vol. 18, Nov. 2021.16

[7] G. L. Cerone, A. Giangrande, M. Ghislieri, M. Gazzoni, H. Piitulainen, and17

A. Botter, “Design and validation of a wireless body sensor network for integrated18

EEG and HD-sEMG acquisitions,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30,19

pp. 61–71, Jan. 2022.20

[8] C. Breitwieser and C. Eibel, “TiA – documentation of TOBI interface a,” arXiv21

[cs.NI], Mar. 2011.22

[9] B. Möller, K. L. Morse, and M. Lightner, “HLA evolved – a summary of major23

technical improvements,” 2008.24

[10] Y. H. Ali, K. Bodkin, M. Rigotti-Thompson, K. Patel, N. S. Card, B. Bhaduri, S. R.25

Nason-Tomaszewski, D. M. Mifsud, X. Hou, C. Nicolas, S. Allcroft, L. R. Hochberg,26

N. A. Yong, S. D. Stavisky, L. E. Miller, D. M. Brandman, and C. Pandarinath,27

“BRAND: A platform for closed-loop experiments with deep network models,”28

bioRxiv, p. 2023.08.08.552473, Aug. 2023.29

[11] IEEE SA Standards Board, “IEEE standard for a precision clock synchronization30

protocol for networked measurement and control systems,” June 2020.31

[12] G. Lopes, N. Bonacchi, J. FrazÃ£o, J. P. Neto, B. V. Atallah, S. Soares, L. Moreira,32

S. Matias, P. M. Itskov, P. A. Correia, R. E. Medina, L. Calcaterra, E. Dreosti,33

J. J. Paton, and A. R. Kampff, “Bonsai: an event-based framework for processing34

and controlling data streams,” Front. Neuroinform., vol. 9, Apr. 2015.35

[13] “IEEE standard for information technology–portable operating system interface36

(POSIX(TM)) base specifications, issue 7,” 2018.37

[14] A. Kapoulkine, “pugixml: Light-weight, simple and fast XML parser for c++ with38

XPath support.”39

[15] “loguru: Python logging made (stupidly) simple.”40

[16] C. Kohlhoff, “Boost.asio - 1.82.0.” https://www.boost.org/doc/libs/1_82_0/doc/41

html/boost_asio.html. Accessed: 2023-7-1.42

[17] S. Koranne, “Boost c++ libraries,” in Handbook of Open Source Tools, pp. 127–143,43

Boston, MA: Springer US, 2011.44

[18] D. S. E. Deering, “Host extensions for IP multicasting.” RFC 1112, Aug. 1989.45

[19] “XML path language (XPath).” https://www.w3.org/TR/1999/46

REC-xpath-19991116/. Accessed: 2023-7-13.47

[20] R. T. Fielding, M. Nottingham, and J. Reschke, “RFC 9110: HTTP semantics.”48

https://www.rfc-editor.org/rfc/rfc9110.html. Accessed: 2023-7-13.49

[21] American National Standards Institute, “Standard for consumer EEG file format,”50

Nov. 2017.51

[22] S. Bustamante, J. Peters, B. Scholkopf, M. Grosse-Wentrup, and V. Jayaram,52

“ArmSym: A virtual human–robot interaction laboratory for assistive robotics,”53

IEEE Trans. Hum. Mach. Syst., vol. 51, pp. 568–577, Dec. 2021.54

[23] T. Kang and C. Wallraven, “Gotta go fast: Measuring input/output latencies of55

virtual reality 3D engines for cognitive experiments,” arXiv [cs.HC], June 2023.56

[24] D. Weber, S. Hertweck, H. Alwanni, L. D. J. Fiederer, X. Wang, F. Unruh,57

M. Fischbach, M. E. Latoschik, and T. Ball, “A structured approach to test the58

signal quality of electroencephalography measurements during use of head-mounted59

displays for virtual reality applications,” Front. Neurosci., vol. 15, p. 733673, Nov.60

2021.61

[25] J. Levitt, Z. Yang, S. D. Williams, S. E. Lütschg Espinosa, A. Garcia-Casal, and L. D.62

Lewis, “EEG-LLAMAS: an open source, low latency, EEG-fMRI neurofeedback63

platform,” bioRxiv, Nov. 2022.64

[26] S. Iwama, M. Takemi, R. Eguchi, R. Hirose, M. Morishige, and others, “Two65

common issues in synchronized multimodal recordings with EEG: Jitter and66

latency,” bioRxiv, 2022.67

[27] M. Merino-Monge, A. J. Molina-Cantero, J. A. Castro-Garcia, and I. M. Gomez-68

Gonzalez, “An easy-to-use multi-source recording and synchronization software69

for experimental trials,” IEEE Access, vol. 8, pp. 200618–200634, 2020.70

[28] S. Blum, D. Hölle, M. G. Bleichner, and S. Debener, “Pocketable labs for everyone:71

Synchronized multi-sensor data streaming and recording on smartphones with the72

lab streaming layer,” Sensors (Basel), vol. 21, p. 8135, Dec. 2021.73

[29] S. Appelhoff and T. Stenner, “In COM we trust: Feasibility of USB-based event74

marking,” Behav. Res. Methods, vol. 53, pp. 2450–2455, Dec. 2021.75

[30] C. Kothe, T. Mullen, and S. Makeig, “Strum: A new dataset for neuroergonomics76

research,” in 2018 IEEE International Conference on Systems, Man, and77

Cybernetics, pp. 77–82, IEEE, Oct. 2018.78

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.13.580071doi: bioRxiv preprint 

https://datatracker.ietf.org/doc/rfc5905/
https://datatracker.ietf.org/doc/rfc5905/
https://datatracker.ietf.org/doc/rfc5905/
https://www.boost.org/doc/libs/1_82_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_82_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_82_0/doc/html/boost_asio.html
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.rfc-editor.org/rfc/rfc9110.html
https://doi.org/10.1101/2024.02.13.580071

	Introduction
	Introduction
	The Broader Landscape in Multimodal Recording
	LSL Limitations
	LSL Advantages

	System Overview
	System overview
	LSL Objectives
	LSL Design
	The Discovery Protocol
	The Subscription Protocol
	The Stream Transmission Protocol
	The Metadata Transmission Protocol
	Time Synchronization Protocol

	The Extensible Data Format (XDF)
	Failure Resilience
	Software Stack
	Continued Development and Maintenance

	Testing and Results
	Instrument Latency in a Local LSL Setup
	Instrument Latency in a Networked LSL Setup
	Determining the Setup Offset

	Summary and Conclusion
	Acknowledgment
	References



