EEGLAB Importer¶
The EEGLABImporter
class is responsible for importing EMG (and other biopotential) data from EEGLAB .set
files.
Class Documentation¶
emgio.importers.eeglab
¶
BaseImporter
¶
Bases: ABC
Base class for EMG data importers.
Source code in emgio/importers/base.py
load(filepath)
abstractmethod
¶
Load EMG data from file.
Args: filepath: Path to the input file
Returns: EMG: EMG object containing the loaded data
EEGLABImporter
¶
Bases: BaseImporter
Importer for EEGLAB .set files containing EMG data.
Source code in emgio/importers/eeglab.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
load(filepath)
¶
Load EMG data from EEGLAB .set file.
Args: filepath: Path to the EEGLAB .set file
Returns: EMG: EMG object containing the loaded data
Source code in emgio/importers/eeglab.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
EMG
¶
Core EMG class for handling EMG data and metadata.
Attributes: signals (pd.DataFrame): Raw signal data with time as index. metadata (dict): Metadata dictionary containing recording information. channels (dict): Channel information including type, unit, sampling frequency. events (pd.DataFrame): Annotations or events associated with the signals, with columns 'onset', 'duration', 'description'.
Source code in emgio/core/emg.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
__init__()
¶
Source code in emgio/core/emg.py
add_channel(label, data, sample_frequency, physical_dimension, prefilter='n/a', channel_type='EMG')
¶
Add a new channel to the EMG data.
Args: label: Channel label or name (as per EDF specification) data: Channel data sample_frequency: Sampling frequency in Hz (as per EDF specification) physical_dimension: Physical dimension/unit of measurement (as per EDF specification) prefilter: Pre-filtering applied to the channel channel_type: Channel type ('EMG', 'ACC', 'GYRO', etc.)
Source code in emgio/core/emg.py
add_event(onset, duration, description)
¶
Add an event/annotation to the EMG object.
Args: onset: Event onset time in seconds. duration: Event duration in seconds. description: Event description string.
Source code in emgio/core/emg.py
from_file(filepath, importer=None, force_csv=False, **kwargs)
classmethod
¶
The method to create EMG object from file.
Args: filepath: Path to the input file importer: Name of the importer to use. Can be one of the following: - 'trigno': Delsys Trigno EMG system (CSV) - 'otb': OTB/OTB+ EMG system (OTB, OTB+) - 'eeglab': EEGLAB .set files (SET) - 'edf': EDF/EDF+/BDF/BDF+ format (EDF, BDF) - 'csv': Generic CSV (or TXT) files with columnar data - 'wfdb': Waveform Database (WFDB) If None, the importer will be inferred from the file extension. Automatic import is supported for CSV/TXT files. force_csv: If True and importer is 'csv', forces using the generic CSV importer even if the file appears to match a specialized format. **kwargs: Additional arguments passed to the importer
Returns: EMG: New EMG object with loaded data
Source code in emgio/core/emg.py
get_channel_types()
¶
Get list of unique channel types in the data.
Returns: List of channel types (e.g., ['EMG', 'ACC', 'GYRO'])
get_channels_by_type(channel_type)
¶
Get list of channels of a specific type.
Args: channel_type: Type of channels to get ('EMG', 'ACC', 'GYRO', etc.)
Returns: List of channel names of the specified type
Source code in emgio/core/emg.py
get_metadata(key)
¶
Get metadata value.
Args: key: Metadata key
Returns: Value associated with the key
plot_signals(channels=None, time_range=None, offset_scale=0.8, uniform_scale=True, detrend=False, grid=True, title=None, show=True, plt_module=None)
¶
Plot EMG signals in a single plot with vertical offsets.
Args: channels: List of channels to plot. If None, plot all channels. time_range: Tuple of (start_time, end_time) to plot. If None, plot all data. offset_scale: Portion of allocated space each signal can use (0.0 to 1.0). uniform_scale: Whether to use the same scale for all signals. detrend: Whether to remove mean from signals before plotting. grid: Whether to show grid lines. title: Optional title for the figure. show: Whether to display the plot. plt_module: Matplotlib pyplot module to use.
Source code in emgio/core/emg.py
select_channels(channels=None, channel_type=None, inplace=False)
¶
Select specific channels from the data and return a new EMG object.
Args: channels: Channel name or list of channel names to select. If None and channel_type is specified, selects all channels of that type. channel_type: Type of channels to select ('EMG', 'ACC', 'GYRO', etc.). If specified with channels, filters the selection to only channels of this type.
Returns: EMG: A new EMG object containing only the selected channels
Examples: # Select specific channels new_emg = emg.select_channels(['EMG1', 'ACC1'])
# Select all EMG channels
emg_only = emg.select_channels(channel_type='EMG')
# Select specific EMG channels only, this example does not select ACC channels
emg_subset = emg.select_channels(['EMG1', 'ACC1'], channel_type='EMG')
Source code in emgio/core/emg.py
set_metadata(key, value)
¶
to_edf(filepath, method='both', fft_noise_range=None, svd_rank=None, precision_threshold=0.01, format='auto', bypass_analysis=None, verify=False, verify_tolerance=1e-06, verify_channel_map=None, verify_plot=False, events_df=None, **kwargs)
¶
Export EMG data to EDF/BDF format, optionally including events.
Args:
filepath: Path to save the EDF/BDF file
method: Method for signal analysis ('svd', 'fft', or 'both')
'svd': Uses Singular Value Decomposition for noise floor estimation
'fft': Uses Fast Fourier Transform for noise floor estimation
'both': Uses both methods and takes the minimum noise floor (default)
fft_noise_range: Optional tuple (min_freq, max_freq) specifying frequency range for noise in FFT method
svd_rank: Optional manual rank cutoff for signal/noise separation in SVD method
precision_threshold: Maximum acceptable precision loss percentage (default: 0.01%)
format: Format to use ('auto', 'edf', or 'bdf'). Default is 'auto'.
If 'edf' or 'bdf' is specified, that format will be used directly.
If 'auto', the format (EDF/16-bit or BDF/24-bit) is chosen based
on signal analysis to minimize precision loss while preferring EDF
if sufficient.
bypass_analysis: If True, skip signal analysis step when format is explicitly
set to 'edf' or 'bdf'. If None (default), analysis is skipped
automatically when format is forced. Set to False to force
analysis even with a specified format. Ignored if format='auto'.
verify: If True, reload the exported file and compare signals with the original
to check for data integrity loss. Results are printed. (default: False)
verify_tolerance: Absolute tolerance used when comparing signals during verification. (default: 1e-6)
verify_channel_map: Optional dictionary mapping original channel names (keys)
to reloaded channel names (values) for verification.
Used if verify
is True and channel names might differ.
verify_plot: If True and verify is True, plots a comparison of original vs reloaded signals.
events_df: Optional DataFrame with events ('onset', 'duration', 'description').
If None, uses self.events. (This provides flexibility)
**kwargs: Additional arguments for the EDF exporter
Returns: Union[str, None]: If verify is True, returns a string with verification results. Otherwise, returns None.
Raises: ValueError: If no signals are loaded
Source code in emgio/core/emg.py
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|
Usage Example¶
from emgio import EMG
from emgio.importers.eeglab import EEGLABImporter
# Method 1: Using EMG.from_file (recommended)
emg = EMG.from_file('data.set', importer='eeglab')
# Method 2: Using the importer directly
importer = EEGLABImporter('data.set')
signals, channels, metadata = importer.load()
emg = EMG(signals, channels, metadata)
File Format Support¶
The EEGLAB importer supports:
- MATLAB
.set
files (version 7.3 and earlier) - Both continuous and epoched data
- Multiple channel types (EMG, EEG, ACC, etc.)
- Event markers and annotations
Channel Type Detection¶
The EEGLAB importer attempts to detect channel types based on:
- Channel labels in the EEGLAB
chanlocs
structure - Channel type information if available
- Naming conventions (e.g., channels with 'EMG' in the name are classified as 'EMG')
Parameters¶
- file_path (str): Path to the EEGLAB .set file
- kwargs (dict): Additional keyword arguments
- load_data (bool, optional): Whether to load the data or just metadata. Default is True.
- channel_types (dict, optional): Manual mapping of channel names to types.
Return Values¶
The load()
method returns a tuple of:
- signals (pandas.DataFrame): Signal data with channels as columns
- channels (dict): Dictionary of channel information including:
- channel_type: Type of channel (EMG, EEG, etc.)
- physical_dimension: Physical unit (e.g., 'µV')
- sample_frequency: Sampling rate in Hz
-
coordinates: Channel coordinates if available
-
metadata (dict): Dictionary containing metadata from the EEGLAB file, including:
- subject: Subject identifier
- session: Session identifier
- condition: Condition/task information
- srate: Sampling rate
- xmin/xmax: Time limits
- event: Event markers
- epoch: Epoch information (if epoched)
Notes¶
- The importer automatically handles both continuous and epoched data
- For epoched data, epochs are concatenated in the time dimension
- Event markers are preserved in the metadata
- Channel locations are preserved in the channel information when available