EDF/BDF Exporter¶
The EDF/BDF exporter module in EMGIO provides functionality to export EMG data to EDF (European Data Format) or BDF (BioSemi Data Format) files.
Module Documentation¶
emgio.exporters.edf
¶
EDFExporter
¶
Exporter for EDF format with channels.tsv generation.
Source code in emgio/exporters/edf.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
|
export(emg, filepath, precision_threshold=0.01, method='both', fft_noise_range=None, svd_rank=None, format='auto', bypass_analysis=False, events_df=None, **kwargs)
staticmethod
¶
Export EMG data to EDF/BDF format with corresponding channels.tsv file.
Args: emg: EMG object containing the data filepath: Path to save the EDF/BDF file precision_threshold: Maximum acceptable precision loss percentage (default: 0.01%) method: Method for signal analysis ('svd', 'fft', or 'both') 'svd': Uses Singular Value Decomposition for noise floor estimation 'fft': Uses Fast Fourier Transform for noise floor estimation 'both': Uses both methods and takes the minimum noise floor (default) fft_noise_range: Optional tuple (min_freq, max_freq) specifying frequency range for noise in FFT method svd_rank: Optional manual rank cutoff for signal/noise separation in SVD method format: Format to use ('auto', 'edf', or 'bdf'). Default is 'auto'. If 'edf' or 'bdf' is specified, that format will be used directly. If 'auto', the format (EDF/16-bit or BDF/24-bit) is chosen based on signal analysis to minimize precision loss while preferring EDF if sufficient. bypass_analysis: If True, skip the signal analysis step. Requires format to be explicitly set to 'edf' or 'bdf'. (default: False) events_df: Optional DataFrame containing events/annotations to write. Columns should include 'onset', 'duration', 'description'. If None or empty, no annotations are written. **kwargs: Additional arguments for the exporter
Source code in emgio/exporters/edf.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
|
EMG
¶
Core EMG class for handling EMG data and metadata.
Attributes: signals (pd.DataFrame): Raw signal data with time as index. metadata (dict): Metadata dictionary containing recording information. channels (dict): Channel information including type, unit, sampling frequency. events (pd.DataFrame): Annotations or events associated with the signals, with columns 'onset', 'duration', 'description'.
Source code in emgio/core/emg.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
__init__()
¶
Source code in emgio/core/emg.py
add_channel(label, data, sample_frequency, physical_dimension, prefilter='n/a', channel_type='EMG')
¶
Add a new channel to the EMG data.
Args: label: Channel label or name (as per EDF specification) data: Channel data sample_frequency: Sampling frequency in Hz (as per EDF specification) physical_dimension: Physical dimension/unit of measurement (as per EDF specification) prefilter: Pre-filtering applied to the channel channel_type: Channel type ('EMG', 'ACC', 'GYRO', etc.)
Source code in emgio/core/emg.py
add_event(onset, duration, description)
¶
Add an event/annotation to the EMG object.
Args: onset: Event onset time in seconds. duration: Event duration in seconds. description: Event description string.
Source code in emgio/core/emg.py
from_file(filepath, importer=None, force_csv=False, **kwargs)
classmethod
¶
The method to create EMG object from file.
Args: filepath: Path to the input file importer: Name of the importer to use. Can be one of the following: - 'trigno': Delsys Trigno EMG system (CSV) - 'otb': OTB/OTB+ EMG system (OTB, OTB+) - 'eeglab': EEGLAB .set files (SET) - 'edf': EDF/EDF+/BDF/BDF+ format (EDF, BDF) - 'csv': Generic CSV (or TXT) files with columnar data - 'wfdb': Waveform Database (WFDB) If None, the importer will be inferred from the file extension. Automatic import is supported for CSV/TXT files. force_csv: If True and importer is 'csv', forces using the generic CSV importer even if the file appears to match a specialized format. **kwargs: Additional arguments passed to the importer
Returns: EMG: New EMG object with loaded data
Source code in emgio/core/emg.py
get_channel_types()
¶
Get list of unique channel types in the data.
Returns: List of channel types (e.g., ['EMG', 'ACC', 'GYRO'])
get_channels_by_type(channel_type)
¶
Get list of channels of a specific type.
Args: channel_type: Type of channels to get ('EMG', 'ACC', 'GYRO', etc.)
Returns: List of channel names of the specified type
Source code in emgio/core/emg.py
get_metadata(key)
¶
Get metadata value.
Args: key: Metadata key
Returns: Value associated with the key
plot_signals(channels=None, time_range=None, offset_scale=0.8, uniform_scale=True, detrend=False, grid=True, title=None, show=True, plt_module=None)
¶
Plot EMG signals in a single plot with vertical offsets.
Args: channels: List of channels to plot. If None, plot all channels. time_range: Tuple of (start_time, end_time) to plot. If None, plot all data. offset_scale: Portion of allocated space each signal can use (0.0 to 1.0). uniform_scale: Whether to use the same scale for all signals. detrend: Whether to remove mean from signals before plotting. grid: Whether to show grid lines. title: Optional title for the figure. show: Whether to display the plot. plt_module: Matplotlib pyplot module to use.
Source code in emgio/core/emg.py
select_channels(channels=None, channel_type=None, inplace=False)
¶
Select specific channels from the data and return a new EMG object.
Args: channels: Channel name or list of channel names to select. If None and channel_type is specified, selects all channels of that type. channel_type: Type of channels to select ('EMG', 'ACC', 'GYRO', etc.). If specified with channels, filters the selection to only channels of this type.
Returns: EMG: A new EMG object containing only the selected channels
Examples: # Select specific channels new_emg = emg.select_channels(['EMG1', 'ACC1'])
# Select all EMG channels
emg_only = emg.select_channels(channel_type='EMG')
# Select specific EMG channels only, this example does not select ACC channels
emg_subset = emg.select_channels(['EMG1', 'ACC1'], channel_type='EMG')
Source code in emgio/core/emg.py
set_metadata(key, value)
¶
to_edf(filepath, method='both', fft_noise_range=None, svd_rank=None, precision_threshold=0.01, format='auto', bypass_analysis=None, verify=False, verify_tolerance=1e-06, verify_channel_map=None, verify_plot=False, events_df=None, **kwargs)
¶
Export EMG data to EDF/BDF format, optionally including events.
Args:
filepath: Path to save the EDF/BDF file
method: Method for signal analysis ('svd', 'fft', or 'both')
'svd': Uses Singular Value Decomposition for noise floor estimation
'fft': Uses Fast Fourier Transform for noise floor estimation
'both': Uses both methods and takes the minimum noise floor (default)
fft_noise_range: Optional tuple (min_freq, max_freq) specifying frequency range for noise in FFT method
svd_rank: Optional manual rank cutoff for signal/noise separation in SVD method
precision_threshold: Maximum acceptable precision loss percentage (default: 0.01%)
format: Format to use ('auto', 'edf', or 'bdf'). Default is 'auto'.
If 'edf' or 'bdf' is specified, that format will be used directly.
If 'auto', the format (EDF/16-bit or BDF/24-bit) is chosen based
on signal analysis to minimize precision loss while preferring EDF
if sufficient.
bypass_analysis: If True, skip signal analysis step when format is explicitly
set to 'edf' or 'bdf'. If None (default), analysis is skipped
automatically when format is forced. Set to False to force
analysis even with a specified format. Ignored if format='auto'.
verify: If True, reload the exported file and compare signals with the original
to check for data integrity loss. Results are printed. (default: False)
verify_tolerance: Absolute tolerance used when comparing signals during verification. (default: 1e-6)
verify_channel_map: Optional dictionary mapping original channel names (keys)
to reloaded channel names (values) for verification.
Used if verify
is True and channel names might differ.
verify_plot: If True and verify is True, plots a comparison of original vs reloaded signals.
events_df: Optional DataFrame with events ('onset', 'duration', 'description').
If None, uses self.events. (This provides flexibility)
**kwargs: Additional arguments for the EDF exporter
Returns: Union[str, None]: If verify is True, returns a string with verification results. Otherwise, returns None.
Raises: ValueError: If no signals are loaded
Source code in emgio/core/emg.py
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|
_calculate_precision_loss(signal, scaling_factor, digital_min, digital_max)
¶
Calculate precision loss when scaling signal to digital values.
Args: signal: Original signal values scaling_factor: Scaling factor to convert to digital values digital_min: Minimum digital value digital_max: Maximum digital value
Returns: float: Maximum relative precision loss as percentage
Source code in emgio/exporters/edf.py
_determine_scaling_factors(signal_min, signal_max, use_bdf=False)
¶
Calculate optimal scaling factors for EDF/BDF signal conversion. Automatically scales values to fit format character limits.
Args: signal_min: Minimum value of the signal signal_max: Maximum value of the signal use_bdf: Whether to use BDF (24-bit) format
Returns: tuple: (physical_min, physical_max, digital_min, digital_max, scaling_factor)
Source code in emgio/exporters/edf.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
_format_physical_value(value, max_chars)
¶
Format a physical value to fit within EDF character limits.
Args: value: Physical value to format max_chars: Maximum number of characters allowed
Returns: tuple: (formatted_value, formatted_string)
Source code in emgio/exporters/edf.py
analyze_signal(signal, method='svd', fft_noise_range=None, svd_rank=None)
¶
Analyze signal characteristics including noise floor and dynamic range.
Args: signal: Input signal array method: Method for noise floor estimation: 'svd' (default), 'fft', or 'both' fft_noise_range: Optional tuple (min_freq, max_freq) for FFT method svd_rank: Optional rank cutoff for SVD method
Returns: dict: Analysis results including range, noise floor, and dynamic range in dB
Source code in emgio/analysis/signal.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
determine_format_suitability(signal, analysis)
¶
Determine whether EDF or BDF format is suitable for the signal.
Args: signal: Input signal array analysis: Signal analysis results from analyze_signal()
Returns: tuple: (use_bdf, reason, snr_db)
Source code in emgio/analysis/signal.py
summarize_channels(channels, signals, analyses)
¶
Generate a summary of channel characteristics grouped by type.
Args: channels: Dictionary of channel information signals: Dictionary of signal data analyses: Dictionary of signal analyses
Returns: str: Formatted summary string
Source code in emgio/exporters/edf.py
Usage Example¶
from emgio import EMG
# Load data
emg = EMG.from_file('data.csv', importer='trigno')
# Export to EDF/BDF with automatic format selection
emg.to_edf('output') # Will generate output.edf or output.bdf
# Force specific format
emg.to_edf('output_edf', format='edf') # Forces 16-bit EDF
emg.to_edf('output_bdf', format='bdf') # Forces 24-bit BDF
Automatic Format Selection¶
A key feature of EMGIO's exporter is its ability to automatically determine whether to use EDF (16-bit) or BDF (24-bit) format based on the dynamic range of the data:
# Control the analysis method for format selection
emg.to_edf('output', method='svd') # Use SVD analysis only
emg.to_edf('output', method='fft') # Use FFT analysis only
emg.to_edf('output', method='both') # Use both methods (default)
# Customize SVD parameters
emg.to_edf('output', method='svd', svd_rank=5) # Manual rank cutoff
# Customize FFT parameters
emg.to_edf('output',
method='fft',
fft_noise_range=(0.1, 10)) # Manual frequency range for noise floor estimation
Parameters¶
The to_edf
method accepts the following parameters:
- output_path (str): Path for the output file (without extension)
- format (str, optional): Specify the format to use ('auto', 'edf', or 'bdf'). Default is 'auto'.
- method (str, optional): Method for format selection ('svd', 'fft', or 'both'). Default is 'both'.
- svd_rank (int, optional): Rank cutoff for SVD analysis. Default is None (automatic).
- fft_noise_range (tuple, optional): Frequency range (min, max) for noise floor estimation in FFT. Default is None (automatic).
- physical_min (float, optional): Physical minimum value. Default is None (automatic).
- physical_max (float, optional): Physical maximum value. Default is None (automatic).
- overwrite (bool, optional): Whether to overwrite existing files. Default is False.
- additional_info (dict, optional): Additional information to include in the EDF header.
Understanding Format Selection¶
The exporter uses two complementary approaches to determine the appropriate format:
1. SVD Analysis¶
Singular Value Decomposition (SVD) is used to: - Estimate the effective dimensionality of the data - Analyze the distribution of signal energy across components - Determine if the precision requirements can be satisfied by 16-bit representation
2. FFT Analysis¶
Fast Fourier Transform (FFT) analysis: - Examines the frequency domain representation of the data - Evaluates the noise floor and signal-to-noise ratio - Helps determine if 16-bit precision is sufficient or if 24-bit is needed
Output Files¶
When exporting, EMGIO generates the following files:
- Main data file: Either
.edf
or.bdf
extension depending on the format selected - Channels metadata file: A
{output_path}.channels.tsv
file with detailed channel information in BIDS-compatible format
Example channels.tsv file content:
Additional Features¶
- Channel scaling: Signals are automatically scaled to maximize precision
- Metadata preservation: Subject, recording, and other metadata are included in the EDF header
- BIDS compatibility: The exporter follows BIDS conventions for metadata
- Multi-channel support: Handles multiple channel types with appropriate units
- Different sampling rates: Can handle channels with different sampling rates