Topographic maps showing how μECoG at Motor Cortex projects across the scalp

Simulating Scalp EEG from Ultrahigh-Density ECoG Data Illustrates Cortex to Scalp Projection Patterns

Using 1024-electrode ultrahigh-density electrocorticography (μECoG) data as ground truth, this study demonstrates that cortical activity from a small 3×3 cm patch projects broadly across the entire scalp surface, not just to nearby EEG electrodes. By applying ICA decomposition and forward-projecting through a high-definition head model, we show that scalp EEG channels reflect complex mixtures of distributed cortical sources rather than primarily local activity. These findings challenge conventional channel-level EEG interpretation approaches and underscore the critical importance of source-level analysis methods for accurate understanding of brain electrical activity.

Participants per Task and Release Overview

HBN-EEG: Healthy Brain Network EEG Datasets

The Healthy Brain Network EEG Datasets (HBN-EEG) includes 11 dataset releases containing EEG, behavioral data, and rich event annotations from participants aged 5-21 years, supporting large-scale analyses and machine-learning research on mental health.

HBN-EEG dataset

HBN-EEG: The FAIR implementation of the Healthy Brain Network (HBN) electroencephalography dataset

The HBN-EEG dataset provides a comprehensive collection of high-density EEG recordings from the Healthy Brain Network project, formatted in the Brain Imaging Data Structure (BIDS) standard. This dataset includes annotated behavioral and task-condition events, making it ready for various types of analysis without the need for extensive preprocessing. With data from over 2,600 participants, the HBN-EEG dataset supports the development and validation of EEG analysis methods, including machine learning and deep learning approaches. Additionally, it aims to facilitate the creation of EEG-based biomarkers for psychiatric disorders, offering valuable insights into brain function and mental health.

The overall design of the Lab Streaming Layer (LSL) for synchronized data recording.

The Lab Streaming Layer for Synchronized Multimodal Recording

The Lab Streaming Layer (LSL) presents a software-based solution for synchronizing data streams across multiple instruments in neurophysiological research. Utilizing per-sample time stamps and LAN-based time synchronization, LSL ensures accurate, continuous recording despite varying device clocks. It automatically corrects for network delays and jitters, maintaining data integrity through disruptions. Supporting over 150 device classes and compatible with numerous programming languages, LSL has become a vital tool for integrating diverse data acquisition systems. Its robustness and adaptability have extended its application beyond research, into art, performance, and commercial realms, making it a cornerstone for multimodal data collection and synchronization.