Older adults use fewer muscles to overcome perturbations during a seated locomotor task.

Older adults use fewer muscles to overcome perturbations during a seated locomotor task

Older adults often demonstrate greater co-contraction and motor errors than young adults in response to motor perturbations. We demonstrated that older adults reduced their motor errors more than young adults with brief perturbations during recumbent stepping while maintaining greater muscle co-contraction. In doing so, older adults largely used one muscle pair to drive the stepper, tibialis anterior and soleus, while young adults used all muscles. These two muscles are crucial for maintaining upright balance.

The effect of fiducial mismarking on EEG source estimation.

Differential Theta-Band Signatures of the Anterior Cingulate and Motor Cortices During Seated Locomotor Perturbations

We demonstrate that seated locomotor perturbations produce differential theta-band responses in the anterior cingulate and supplementary motor areas, suggesting that tuning perturbation parameters can potentially modify electrocortical responses.

The five digitizing methods tested in this study.

More Reliable EEG Electrode Digitizing Methods Can Reduce Source Estimation Uncertainty, but Current Methods Already Accurately Identify Brodmann Areas

Download Paper Code and data Abstract Electroencephalography (EEG) and source estimation can be used to identify brain areas activated during a task, which could offer greater insight on cortical dynamics. Source estimation requires knowledge of the locations of the EEG electrodes. This could be provided with a template or obtained by digitizing the EEG electrode locations. Operator skill and inherent uncertainties of a digitizing system likely produce a range of digitization reliabilities, which could affect source estimation and the interpretation of the estimated source locations....

The effect of fiducial mismarking on EEG source estimation.

Influence of Mismarking Fiducial Locations on EEG Source Estimation

Mismarking fiducial locations can systematically change EEG source locations. We inestigated this effect by systematically moving the fiducial locations to simulate such errors.